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Excitation-assisted nonadiabatic charge-transfer reaction in a mixed atom-ion system
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An important physical process unique to neutral-ion systems is the charge-transfer reaction. Here, we present
measurements of and models for charge-transfer processes between cotrapped ultracold Ca atoms and Yb ions
under well-controlled conditions. The theoretical analysis suggests the existence of three reaction mechanisms
when lasers from a magneto-optical trap and an additional catalyst laser are present. We show that the
near-degeneracy of the excited Ca('P;) + Yb™(3S) and Ca*(®S) + Yb(®D,) asymptotic limits leads to large
charge-transfer rate coefficients that can be controlled by changing the frequency of the catalyst laser and the ion
temperature. Our model agrees with experimental rate-coefficient measurements between 50 mK and 1 K, with
and without the catalyst laser, using just a single free parameter.
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I. INTRODUCTION

Over the last few decades the study of individual quantum
systems decoupled from external perturbations has become
a reality. Combining quantum-degenerate gases of fermionic
or bosonic atoms, held in electromagnetic traps with a wide
range of geometries, with cooled and trapped ions is an
exciting and dynamic area in physics. Cold and trapped
atom-ion mixtures can be engineered with a high level of
control, detected state selectively, and even constructed at the
single-ion level. The majority of experimental and theoret-
ical research on charge transfer (CT) with ultracold atoms
and ions has focused on their collisions when prepared in
their electronic ground state [1-18]. Often, however, cold
atom-ion experiments involve holding the neutral atoms in
a magneto-optical trap (MOT), providing opportunities for
scattering of electronically excited atoms with the cotrapped
ions. Although the first steps towards understanding these
collisions have been reported [9,19,20], theoretical details are
still poorly understood.

Charge transfer can only be realized through transitions
between two or more potential energy surfaces that are
characterized by electron transfer from the neutral atom to
the ion, i.e., AT +B — A + B™. In the conventional Born-
Oppenheimer (BO) adiabatic picture, such transitions occur
due to nonadiabatic coupling induced by the nuclear motion
in the initial and final electronic states [21]. Usually, this
coupling occurs in a small localized range of interparticle
separations R, when electronic BO potentials of the same
symmetry have a so-called avoided crossing following the
Wigner-Witmer noncrossing rule.

When an avoided crossing between entrance and exit BO
potentials is broad as is the case for many heteronuclear
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atom-ion pairs in their electronic ground states, the CT rate
coefficients are very small, in most cases of the order of
10714 cm3/s or below [7,18,22,23]. On the other hand, in a
region where the molecular structure is complex and poten-
tial curves are dense, there is a high probability of having
narrower avoided crossings that will lead to much higher CT
rate coefficients, sometimes approaching values of universal
models [20,24]. Our study provides clear evidence of such
a situation when a number of excited states with closely
lying potentials, populated through an excitation laser, couple
strongly via nonadiabatic couplings leading to significant CT
reactions. Even though the atoms in the MOT spend most of
their time in the ground electronic state, the rate coefficients
can still reach four orders of magnitude higher than that of
pure ground-state CT reactions.

Here, we study collisions between Ca atoms in a MOT
and Yb™ ions in a colocated linear-quadrupole ion trap. In
this system, CT reactions involve excited 4s4p'P Ca atoms
and ground-state Yb* ions. Experimental and theoretical CT
rate coefficients are obtained and compared for temperatures
001K <T < 1K.

We use a coupled-channels (CC) model of atom-ion scat-
tering based on ground- and excited-state diabatic potentials,
their couplings, and the infinite-order sudden approximation.
The Hamiltonian is the sum of a kinetic and a potential
energy operator. The relative kinetic energy operator is in-
versely proportional to the reduced mass of the dimer based
on the masses of the atom and ion (rather than the masses
of the nuclei) and captures the dominant nonadiabatic cor-
rections. In principle, the coordinate depends on which of
the two atoms is ionized, either Ca + Yb™ or Ca™ + Yb.
These correspond to the separations R; and R, between the
centers of mass of the neutral atom and the ion, respectively.
Similarly, the reduced masses of the two collisional com-
plexes, u; and u,, are different. However, the differences
in Ry and R, and p; and u, are small, of the order of the
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electron-to-reduced-dimer mass ratio (~1/2000). Therefore,
given other approximations within our CC calculations, we
chose R and u as those of the entrance channel Ca + Yb™
throughout the paper.

At each R, the separation between the center of mass of
Ca and Yb™, the potential energy operator can be written in a
matrix representation with dimensions given by the number of
channels or states (defined in detail in the next two sections).
The diabatic potentials correspond to the diagonal matrix
elements and couplings are off diagonal matrix elements. Spe-
cial attention has been given to the long-range induction and
dispersion interactions, as the dissociation limits of excited-
state potentials are in close proximity and nonnegligible cou-
plings between the potentials are present at relatively large
separations.

We incorporate spontaneous emission from excited-state
potentials and include survival probabilities as an important
element in our model. To further elucidate the role of excited
states in CT an additional catalyst laser with a frequency that
is red detuned from that of the MOT laser is applied. As we
show, the effect of spontaneous emission on the reaction path
is then suppressed.

We show that up to three mechanisms or pathways con-
tribute to the reaction outcome. Only the third pathway in-
volves the additional catalyst laser. In the first, an atom in
the excited state collides and reacts with the ion. In the
second, a ground-state atom in the presence of the long-
range interaction from a ground-state ion is resonantly excited
by absorption of a photon from the MOT lasers and then
reacts with the ion. Finally, for the third pathway a colliding
ground-state atom-ion pair absorbs a photon from the tunable
catalyst laser and then reacts. In all pathways the long-range
interaction potentials between the cold atom and ion together
with spontaneous emission from the electronically excited
atom-ion complex determine the rate coefficients.

II. MODELING CHARGE-TRANSFER PATHWAYS

A. Molecular complex and pathways

We start our analysis with the potential energy landscape
for the excited-state CT reaction. Figure 1(a) shows the rel-
evant long-range diabatic |2| = 1/2, 3/2, and 5/2 poten-
tials, derived from the multipole expansion of the molecular
forces, dissociating to the Ca(4s4p ' P;) + Yb* (6s25) limit as
well as to the nearly degenerate Ca™(4s2S) + Yb(5d6s>D;)
limit. Their asymptotic splitting is only A = hc x 37.7 cm ™!,
where A is the Planck constant and ¢ is the speed of light
in vacuum. Moreover, the molecular electronic state of each
diabatic potential is a unique element of the separation-
independent “atomic basis” of products of the relevant atomic
or ionic Ca and Yb states. The projection of the total electron
angular momentum on the internuclear axis, €2, is a good
quantum number. Charge transfer only occurs between states
with the same €2, which for our system occurs for || = 1/2
potentials near the two crossings at R ~ 40ay, where ay is
the Bohr radius. Spin-orbit couplings are included which are
essential for the exit channels dissociating to the Ca™ (4s2S) +
Yb(5d6s3D5) limit. Details of our calculation of the poten-
tials and, in particular, the evaluation of the strength of the
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FIG. 1. (a) Long-range diabatic potential energy curves in the
atomic basis as functions of the atom-ion separation R on a logarith-
mic scale. Blue and orange curves dissociate to the Ca(4s4p 'P)) +
Yb*(652S12) and Ca'(4s%S,,,) + Yb(5d6s>D,) limits, respec-
tively. Curves are labeled |€2| and the zero of energy is located at
the topmost dissociation limit. The two crossings between potentials
relevant for charge transfer are indicated by circles. (b) Photon-
dressed potential energies as functions of R for pathway II as
defined in the text. The black curve represents the dressed-state
potential dissociating to Ca(4s®'Sp) + Yb* (652S),2) plus one MOT
photon. The blue curve shows the attractive potential dissociat-
ing to the Ca(4sdp'P) + Ybt(6s2S, ,2) limit. (c) Photon-dressed
potential energy curves as functions of R for pathway III. The
dark-red curve shows the dressed-state potential dissociating to
Ca(4s>1Sy) + Yb' (65 2S1/2) plus one catalyst photon. The blue
curve is as in (b). Black arrows in (a)—(c) indicate the entrance
channel for pathways I, II, and III, respectively. The zero of energy
in (b) and (c) is located at the dressed ground-state dissociation
limit.

coupling near the crossing points can be found below as well
as in Appendix A.

In a MOT, Ca is present in both its ground 4s> 'Sy and its
excited 4s4p ' P, state. We then define CT pathway I as

Ca('Py) + YbT(3S12) — Ca*(*S1,2) + YbCDy),
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where the initial state is indicated by the arrow in Fig. 1(a) and
pathway II as

Ca('So) + YbT(3S1)2) + hwmor — Cat(®Si/2) + Yb(Dy).

This second pathway is assisted or dressed by a MOT pho-
ton with energy hwpor and the |Q] = 1/2 Ca(4sdp'Py) +
Yb+(6s251/2) state is populated as an intermediate state,
which then has CT to Ca™ + Yb as in the first pathway. Here,
h is the reduced Planck constant. The MOT photon is detuned
one natural line width, T, to the red of the Ca 'Sy — P
transition, leading to an avoided crossing at separations of
more than a thousand Bohr radii. The repulsive excited |Q2| =
1/2 and 3/2 channels are also populated due to the laser
coupling but do not lead to a significant CT reaction.
The third (IIT) pathway

Ca('So) + YbT(3S12) + fiwc — Cat(®S1,2) + Yb(Ds)

is also photon assisted. In this case a tunable catalyst laser
with frequency wc is introduced, with the goal to enhance
the CT rate coefficient. The dressed ground-state potential is
shown in Fig. 1(c) and crosses the same intermediate potential
as in the second pathway. Here, the diabatic crossing and
coupling occur at a separation R of 200a to 500ay. The laser
is detuned to the red of the Ca 'Sy — 'P; transition by tens to
hundreds of T".

B. Model ingredients

Conventionally one would compute CT rate coefficients
for scattering from the potentials shown in Fig. 1(a), their
Q-conserving electronic couplings, and the 2-changing (and
-conserving) couplings induced by the relative atom-ion rota-
tional interaction using a CC model. For the relevant collision
energies £ = kg x ImK to kg x 10K and the long-range
1/R? charge-quadruple nature of the potentials, however, con-
tributions to the rate coefficients from a large number of total
molecular angular momenta J need to be included. Here, kg is
the Boltzmann constant and J is the vector sum of the atom-
ion total angular momenta and the relative mechanical orbital
angular momentum I, which is conserved in the absence of
radiation.

To keep the computational effort tractable we employ
the infinite-order sudden approximation (IOSA) [25-28], in
which Coriolis couplings between different 2 states are
neglected and, for a given J, uses a centrifugal potential
B2 [L(L + 1)]/(21uR?) for each diagonal matrix element of the
potential matrix. Here the integer-valued £ is an “average”
orbital angular momentum quantum number and p is the
reduced mass. We choose £ =J — 1/2 justified by the ob-
servation that for our entrance channels the sum of the atom-
ion total angular momenta is 1/2 (in units of 7). The re-
sulting potential matrix is block diagonal in €2, in J, and the
projection M of J along the space-fixed laboratory axis. In
fact, the matrix and thus the rate coefficients are independent
of M. Consequently, we only need to solve for a small set of
coupled Schrodinger or CC equations for each J with M = 0
and Q2 = 1/2 using standard methods [29].

Moreover, collisions on the four degenerate repulsive
|Q| = 1/2 and 3/2 Ca(4s4p'P;) + YbT(652S),2) potentials
will not lead to significant CT, as the reactants for our low

relative collision energies are unlikely to tunnel through
the ~hc x 20 cm™! barrier of these repulsive potentials.
Nevertheless, these potentials will play an important role in
the rate coefficient as population of the corresponding states
is inevitable.

C. Diabatic coupling

Coupling between the diabatic channels is the second
ingredient in setting up our CC model. Its strength is most
important where potentials cross. Figure 1 shows three such
points, but only two, located at R. = 40.7ay and 42.3ay,
respectively, lead to CT. Their coupling, in the diabatic basis
which stipulates that the electronic wave functions barely
change with R, comes from the overlap between the wave
functions of the transferring electron on either the Ca nucleus
or the Yb nucleus. Such interaction is Coulombic in nature and
conserves the body-fixed projection €2. Hence, only crossings
between |2| = 1/2 potentials are relevant. The equivalent
model in the adiabatic picture would include an avoided
crossing between BO potentials and a nonadiabatic coupling
between them that mostly comes from the d/dR term in the
Hamiltonian acting on the overlapping adiabatic electronic
wave functions.

We construct a diabatic two-channel model [21] near each
|€2] = 1/2 crossing. Since the two diabatic basis functions
have different electronic characters, the corresponding nona-
diabatic coupling in the adiabatic picture is localized and
well approximated by a Lorentzian centered at the crossing
point [30]. After transformation into the diabatic picture, we
can write Vi2(R) = [Vi1(R) — Va2 (R)] tan[20 (R)]/2, where
Vi1 (R) and V5, (R) are the two diabatic potentials and mixing
angle ¥ (R) = arctan[(R, — R)/Ry]/2 + m /4 with crossing lo-
cation R, and coupling width Ry. [With these definitions
Vi2(R.) o Ry.] The coupling width Ry is taken to be the same
for our two crossings and will be adjusted to lead to theoretical
rate coefficients that agree with experimental values in cases
where only the first two pathways are involved. The resulting
coupling width is used later for all three pathways.

D. Laser-induced coupling

The MOT and catalyst lasers couple the initial photon-
dressed Ca(4s®'So) + Yb' (65251 )2) + fiwmor,c and excited
Ca(4s4p'P)) + YbT (6525, »2) channels. Using a dressed-
state approach [31] and in the IOSA we find coupling matrix
element —(1 /«/§)d./1 /(2cep) in SI units between the ini-
tial 2 = =£1/2 channel and the attractive 2 = £1/2 excited
channel with the same J.

Here, I is the MOT or catalyst laser intensity, € is the elec-
tric constant, dipole moment d = ./S/3 = 2.85eay, using line
strength S of the 4s2 'Sy—to—4s4p ' P, transition of Ca [32],
and e is the electron charge. The factor 1/+/3 accounts for
the polarization of the laser projected onto the body-fixed
coordinate frame. Direct laser-induced couplings between the
ground 2 = £1/2 and the attractive excited F1/2 channels
do not occur. This is because in the body-fixed frame, the
attractive excited channel has Qc, = 0 and the transition
preserves the projection quantum number of Yb due to the
fact that the transition dipole moment in the long range (where
the transition is most likely to happen) originates from the
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excitation of outer electrons of the Ca atom. The lasers also
couple the ground-state channel to repulsive excited |Q2| =
1/2 and 3/2 channels. The repulsive channels, however, do
not significantly contribute to the charge-transfer process and
their laser-induced coupling matrix elements are not required.

Laser-induced couplings persist to R — oo and for path-
ways II and III we must diagonalize the asymptotic potential
matrix and use its eigenvectors and the average partial-wave
quantum number £ to define a dressed scattering basis. For
pathway I, where light does not dress states, the original
atomic basis states can be used. For each of the three pathways
we can then solve the CC equation for |2] = 1/2 and each
L (or, equivalently, J) and compute the CT cross section
o;(E, L) for i =1, 11, and III and relative kinetic energy E
of the corresponding initial state. The multiplicity factor of
(2L + 1) is included in obtaining the cross section.

E. Spontaneous decay

Charge transfer involving the excited Ca(4s4p!P;) state
is affected by spontaneous emission [33-35], which limits
the probability of colliding particles remaining in the excited
channel and reaching the diabatic crossing region near R ~
40ay, where CT is most likely to occur. For our first pathway,
Ca(4s4p'P;) and Yb" (652S ) start at very large R. For the
second and third pathways the excitation to the intermediate
Ca(4s4p'Py) + YbT (6525, /2) state is resonant at separations
where the energy of the |©2| = 1/2 ground-state potential plus
the energy of a laser photon equals the attractive |2| = 1/2 of
the intermediate channel as shown in Figs. 1(b) and 1(c). This
occurs at R =~ 1200ay for pathway II and between 200ay and
500aq for pathway III, depending on detuning. The classical
time for the atom and ion to be pulled together to separa-
tions near R, by the attractive excited potentials at ultracold
collision energies can approach or exceed the v = 4.59ns
Ca(4s4p ' P)) lifetime.

We account for this spontaneous decay by computing the
survival probability p;(E, L) of reaching crossing points R,
for the initial collision energy E and average partial wave
L for each pathway i [36]. In essence, the probability is
based on computing the collision time along classical trajec-
tories on the attractive excited Ca(4s4p 'P) + Yb* (6525, 2)
|2] = 1/2 potential. More details are given in Appendix A.
The cross section obtained from the CC calculation and the
survival probability are combined to define the total CT rate
coefficient

k(E)=fi Y pi(E, L) vr0i(E, L) )
L=0

for i =1, II, and III, where v, = /2E /i is the absolute
value of the relative velocity Uy . The factor f; = n/3, 1 —n,
and 1 —n for i =1, II, and III, respectively. For pathway I
it accounts for the fact that in a MOT a fraction n of the
Ca atoms is in the exited state and that only the two (de-
generate) attractive |Q2| = 1/2 Ca(4s4p'P) + YbT(652S),2)
channels of the six excited states lead to CT. For pathways II
and III f; is simply the fraction of Ca atoms in the ground
state, as both initial states, 2 = +1/2, equally contribute
to the CT rate coefficient. We use the MOT parameter in
Ref. [37], which leads to n = 0.092, in our calculations.

o Experimental data
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FIG. 2. Total thermalized charge-transfer rate coefficient in a Ca
MOT as a function of the effective temperature 7.5 in the center-of-
mass frame. Filled black circles with one-standard-deviation error
bars are our experimental data points. Solid lines are theoretical
predictions with coupling width R, ranging from 0.35a, to 0.39a,.
The MOT laser has an intensity of 78 mW /cm? and is red detuned
from the Ca 'S;-to-' P, transition by one natural line width, such that
9.2% of the Ca atoms are in the ' P, state.

As the ion temperature 7; is much higher than that of the
atoms, the relative velocity distribution in the center-of-mass
frame can be described by the three-dimensional Gaussian
probability distribution P (7)) exp(—/wrzel /[2kpTegc]) with
effective temperature Toe = mc,T; /M, M = mc, + myy, and
Ca and Yb™ masses mc, and myy, respectively. We use this
distribution to thermally average the CT rate coefficient.

III. RESULTS
A. Pathways I and II: MOT-induced charge transfer

Figure 2 compares our total charge-transfer rate coeffi-
cients as measured in the MOT with the thermalized theo-
retical (kj(E) + ki (E)) for several values of Ry as a function
of the effective temperature 7o between 0.01 and 2 K. The
data show a significant decrease in the rate coefficient due to
the suppression from spontaneous decays as the temperature
decreases by over an order of magnitude. Additional analysis
shows that about 40% of the theoretical rate coefficient is
due to the first pathway. The figure also shows that at a fixed
temperature the rate coefficient increases monotonically when
the coupling width R increases from 0.35a( to 0.39ay. The
theoretical values agree well with the experimental data. The
coupling strength Vi»(R = R.) for these R; at the crossing
points is approximately hc x 0.5 cm™'. In support of the
theoretical model, we obtained comparable coupling strengths
near R. and thus comparable Ry’s with a Heitler-London type
of estimate [38], discussed in detail in Appendix A, using
the overlap integral of Hartree-Fock atomic orbitals and the
electron-nucleus Coulomb interaction potential.

B. Pathway III: Photoassociation-enhanced charge transfer

In the experiment described in Ref. [37] the addition of
a tunable laser with intensity Ic and (angular) frequency wc
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enhances the charge-transfer processes as the third pathway
is added. This laser is detuned to the red of the Ca 'Sy-
to-!P; transition by tens to hundreds of natural line widths.
In fact, the laser excites rovibrational levels of the attractive
|| = 1/2 Ca(4s4p ' P) + YbT (6528 2) potential. Since the
MOT cooling lasers in the experiment are always on, the third
pathway coexists with the other two.

In this paper we want to highlight and focus on the effect of
the catalyst laser. The relevant diabatic potentials are shown
in Figs. 1(a) and 1(c). The potential matrix including the R-
independent laser-induced couplings is diagonalized at large
R for each L. Its eigenvectors are the appropriate scattering
basis states under the IOSA with which to calculate scattering
amplitudes and cross sections. By solving the CC equa-
tions, we obtain the partial cross sections for the third path-
way, o (E, £, wpa). The survival probability pii(E, £, wc) is
higher than for the second pathway. This is because the cross-
ing between the dressed entrance channel and the intermediate
excited channel occurs at R ~ 200ayp—500qy, depending on
wc, which is much smaller than for the second pathway.
Thus, the reactants are quickly accelerated along the excited
attractive 1/R> potential and need much less time to reach R.
to react.

The addition of pathway III via the catalyst laser enhances
the charge-transfer reaction by adding &y (E) to the total rate
coefficient ki (E), while leaving k;(E) and &y (E) unchanged
to good approximation. Similarly, we find thermally aver-
aged rate coefficients ki (7). The theoretical ki (7) based
on Ry = 0.37(2)ag is compared with our experimental rate
coefficients as a function of the catalyst laser detuning and
intensity in Fig. 4 of the accompanying paper [37]. The
agreement is satisfactory and we conclude that we can predict
CT rate coefficients with and without a catalyst laser as well
as its temperature dependence with a single consistent value
for Ry.

In the remainder of this section we present a study of CT
in the presence of the catalyst laser in more detail. Figure 3
shows an example of ky(E') as a function of the laser detuning
at collision energy E = kg x 1 mK. It is evident that the
charge-transfer reaction occurs in a resonant fashion with a
larger number of narrow peaks. The resonance locations clus-
ter and correspond to rotational progressions of the vibrational
series of the attractive |2] = 1/2 potential dissociating to the
Ca(4s4p'P)) + YbT(652S, ,2) threshold. The height of the
resonant features decrease with increasing (negative) detuning
as the overlap of resonances decreases due to increasing
rovibrational spacing in the excited potential.

Scattering from 13 partial waves £ contribute significantly
to the CT as the 1-mK collision energy roughly corresponds
to the height of the centrifugal barrier for the £ = 12 channel.
To illustrate this, we compare the locations of the resonances
with the rovibrational bound states of the attractive diabatic
potential dissociating to the Ca(4s4p'P;)+ YbT (6525, 2)
threshold in Fig. 3. The figure also shows the expected value
of L for each resonance. In Fig. 3(a), the locations of the
onset of each group of resonances closely follow the binding
energies of rovibrational series.

Figure 3(b) shows a blowup of the spectrum for three
vibrational levels in Fig. 3(a). We see that the location of
rotational states £ does not directly follow the location of the

Catalyst laser detuning (GHz)
-6 -5 -4 -3 2 -1

2.4 2.2 -2.0 -1.8
Catalyst laser detuning (GHz)

FIG. 3. Charge-transfer rate coefficients from the catalyst laser
and assignment of catalyst resonances as functions of the detun-
ing from the Ca 'Sy-to-!P; transition for collision energy E =
ks x 1 mK, laser intensity Ic = 5 W/cm?, and coupling width Ry =
0.37ay. (a) The upper panel shows rate coefficients for detunings
between —6 and —0.5 GHz; (b) the upper panel shows a blowup
near —2 GHz in order to better distinguish the different curves. The
dashed blue line corresponds to the total rate coefficient from path-
way III, while the various-colored solid lines represent contributions
from average partial-wave channels £ = 0 to 12. The lower panel
in (a) and (b) shows the rovibrational €2 = 1/2 bound states dissoci-
ating to the Ca(4s4p'Py) + Yb* (652S),,) threshold. The lowest 13
rotational states for each vibrational state are shown and the colors
of the drop lines mimic the colors of the £ contributions in the upper
panels. The y axis in the lower panels is the expectation value of L
of the bound states.

corresponding resonances. The shifts are due to interferences
with the charge-transferred Ca™(*S) 4+ Yb(®D,) exit channels
induced by the nonperturbative short-range couplings.
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FIG. 4. Total charge-transfer rate coefficients in the presence
of the catalyst laser as functions of the collision energy E. The
photoassociation laser is detuned (a) 0.3 GHz, (b) 1.5 GHz,
(c) 3.0 GHz, and (d) 6.0 GHz to the red of the Ca 'Sy-to-'P,
transition. In each panel the vertical dashed green line represents a
collision energy equal to the energy equivalent of the detuning of the
catalyst laser. The vertical dotted brown line is located at E = hl" =
kg x 1.7mK, both the energy equivalent of the MOT laser detuning
and the natural line width of the Ca ' P, state. We assume a catalyst
laser intensity Ic = 6 W /cm? and coupling width Ry = 0.394.

Figure 4 shows an example total CT rate coefficient ki (E)
as a function of the collision energy at four detunings, §,
of the catalyst laser. The laser intensity is two orders of
magnitude larger than Iyior. For 6 = —0.3 GHz, kit (E') shows
a smooth behavior, interlaced with weak narrow features, and
a maximum near £ = kg x 0.1 K. For larger detunings sharp
features dominate, while above a critical collision energy the
rate coefficient rapidly approaches 0. For all detunings strong
resonances are visible for £ < kg x 2mK.

The behavior for large catalyst laser detunings can be
understood from comparison of the collision energy with
hé, the dashed green lines in Fig. 4. For E < hé pathway
IIT contributes resonances to the total rate coefficient due to
the coupling between the entrance channel continuum and
the bound states of the attractive intermediate Q2| = 1/2
potential. When the collision energy exceeds 4§, the entrance
continuum is only coupled to scattering states of the inter-
mediate channel. Their coupling matrix elements are much
smaller than those between continuum-bound states and the
rate coefficient becomes much smaller.

For § = —0.3 GHz, the total rate coefficient does not turn
off at h$ thanks to pathway IIl as a consequence of the
fact that for small detunings the energy spacing between
excitable vibrational levels is smaller and resonances begin
to overlap. In fact, helped by the relatively high-powered
catalyst laser, interference between the broadened resonances
becomes important. Hence, the resonances behave almost like
a continuum and the rate coefficient is a smooth function of £
for energies both lower and higher than /8. The same effect is
not obvious for the MOT laser pathway due to the much lower
laser intensity, which couples the continuum and the bound

states much more weakly and does not broaden the resonances
nearly as much despite the smaller detuning.

Finally, pathway II contributes resonances to the total rate
coefficient for collision energies comparable to or lower than
kg x 2mK, roughly corresponding to the detuning of the
MOT laser hl' = kg x 1.7mK labeled by the dashed brown
lines. These resonances correspond to bound states with ex-
tremely long-range outer turning points in the intermediate
|2| = 1/2 potential.

Currently, our experiments cannot resolve the resonances
illustrated in Figs. 3 and 4 due to the relatively broad velocity
distribution of the ions. Once better energy selectivity can be
achieved and resonances resolved experimentally, the ground
and excited potentials can be theoretically adjusted such that
detunings of resonances from specific excited vibrational
manifolds as well as the corresponding line strength pattern
agree with the experimental data. The energy dependence
shown in Fig. 4 could be observed by accelerating clouds
of ultracold neutral Ca atoms at an ion cloud of a similar
temperature [39].

IV. CONCLUSION

In conclusion, we have presented experimental measure-
ments and results from a close-coupling model of photon-
induced charge transfer in Ca + Yb™ that yield insight into
three contributing reaction mechanisms. The model relies
on a dense manifold of electronically excited long-range
induction and dipolar potentials, their nonadiabatic coupling,
and the survival probabilities against spontaneous emission of
the excited Ca atom. It leads to a high charge-transfer rate
coefficient, of the order of 107!'—107'° cm?3/s, in agreement
with the experimental results [37].

We have shown that the near-degeneracy of the excited
Ca('P)) + Yb*(3S) and Ca*(3S)+ Yb(®’D,) asymptotic
limits leads to large charge-transfer rate coefficients that
can be controlled by changing the frequency of the catalyst
laser. A coupled-channels model, using the long-range
interaction potentials of, as well as the couplings among,
these states, with just a single adjustable coupling strength,
Ry, can reproduce all experimental data, with and without the
catalyst laser, as a function of the temperature. Our theoretical
Heitler-London-type estimate of the coupling strength agrees
with the fitted value.

We have also presented predictions for future experiments
on charge transfer in Ca and Yb™ collisions. We have shown
that a complex resonance spectrum can be observed as the
catalyst laser is scanned over just A = 6 GHz to the red of the
Ca(!Sp)-to—Ca(' Py) line. Similarly, we predict that changing
the collision energy between the atoms and the ions can
significantly change the charge-transfer rate coefficient in a
resonant fashion.
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APPENDIX A: LONG-RANGE INTERACTION
POTENTIALS

We now describe in more detail the long-range diabatic
interaction potentials between excited Ca and Yb™ coupled
to Ca™ and excited Yb as shown in Fig. 1(a). The interaction
between an excited atom and an ion has two contributions.
The first arises from the interaction between the ion charge
and the quadrupole moment of the excited atom and has
an anisotropic C3/R® dependence on atom-ion separation R,
where C3 depends on the orientation of R. The second term
is an anisotropic C4/R* interaction, where Cy also depends on
the orientation of R. It originates in second-order perturba-
tion theory from the interaction between the charge and the
induced dipole moment of the neutral atom. Consequently,
both C; and C4 depend only on the properties of the neutral
atom.

Our diabatic potentials are the diagonal matrix elements
of the molecular interaction in the atomic basis in the body-
fixed frame |9ajaS2as GoJo$26) = 1qas JaS2a)|qp, JbS20) labeled
by charge state g, = 0, +1 and body-fixed projection quantum
number €2, of the angular momentum j; of the atom or ion
along the internuclear axis, where s = a and b for Ca and Yb,
respectively. This uniquely labels the atomic states relevant
for our system. Electronic molecular interactions always con-
serve Q = Q, + 2.

Crucially, for our system both contributions to the long-
range potential are diagonal in this body-fixed basis [31]. The
matrix elements of C3, expressed in two equivalent ways, are

(Js$25152€2,0) Q

C3~jsgs =45 m 5

(JsJslJs2js0) 2

o Js 2 s ) )
=qenh%<g 0 Q%mwmm,
T wdag s

where the quantum numbers j;€2; always describe the state
of the neutral atom, g = +1 for the corresponding ion, (:::)
denotes a Wigner 3-j symbol, and (jim;|j,jzmoms) is a
Clebsch-Gordan coefficient. Finally, Q is the quadrupole mo-
ment defined in Refs. [40,41], while (j;||Qx]||js) is the reduced
matrix element used in Refs. [41,42]. For the ' P; Ca state the
quadrupole moment is positive with |Q] = 11.04ea% [40]. The
sign convention is derived from Ref. [43]. For the 3D, state of
Yb, (jslQ21ljs) = +14.2¢a] [42].

The diagonal matrix elements of the C, coefficient are [44]

3%—Lm+n}
‘]3(2]3 - 1) '
where «op ; is the static scalar polarizability and « ; is
the static tensor polarizability of the neutral atom in state
|0, jsS2). For the Ca Ip, state, oo, = 242.4a(3) and oy =
—55.3618 [40]. For the Yb 3D, state, = 61a(3) and o p =
28a; [42,45].

Finally, the long-range interaction between a neutral S-state
atom and an S-state ion has an isotropic, attractive Cyq/R*

qZ
Cujo, = -7 [ao,jv +az

TABLE 1. C; and C, coefficients of the attractive long-range
2 = 1/2 diabatic potentials in atomic units and quantum numbers
for the corresponding Ca + Yb™ and Ca™ + Yb channels. Channels
are uniquely described by the charge g;, the atomic angular momenta
Jji, and the body-fixed projection €2; on the internuclear axis, with
i = a and b for Ca and Yb, respectively. Potentials are degenerate for
—Q and 2, where Q = Q, + ;.

Ca/Ca* Yb/Yb"
9a Ja Q, q» Jb Q2 G Cy
0 0 0 +1 1/2 1/2 0 —78.55
0 1 0 +1 1/2 1/2 —11.04 —176.74
41 12 12 0 2 0  -339  —165
+1 1/2 —1/2 0 2 1 —1.70 —-23.5

dependence on R. For Ca + Yb™ it is shown in Figs. 1(b) and
1I(c) as the dressed-state potential. The Cy coefficient equals
—ap,0/2, where g g is the static polarizability of the neutral
atom. The C; coefficient is 0, as S-state atoms have zero
quadrupole moment.

Table 1 lists the relevant C; and C, coefficients as well
as the quantum numbers of the channels. A negative sign
indicates attractive interactions. At smaller separations (not
shown in Fig. 1) each potential transitions to a repulsive
C12/R"? potential.

Diabatic potentials with the same €2 cross and couple
near R, &~ 40ay. As discussed in the text, we have opted to
use model coupling function with coupling width Ry. The
value of Ry is fitted to experimental data and estimated to
be between 0.35 and 0.39 ay. In support of our model and
fitting result, we can also estimate the diabatic coupling
strength at R = R, based on a Heitler-London method. In
atomic units, we can write the coupling matrix element be-
tween the attractive |Q2| = 1/2Ca(4s4p'P) + Yb* (652S1,2)
and Ca't (4525 ,2) + Yb(5d6s>D,) channels as

Vi2(R) ~ (Ca(4p)|L + LIYb(Sd)), (A1)

I'ca I'yb

where |Ca(4p)) and |Yb(5d)) are the Ca 4p and Yb 5d
Hartree-Fock electronic orbitals, respectively, and the electron
coordinate for the two orbitals is 7c, vy, With respect to the Ca
and YD nuclei, respectively. At R = 41ay, the method yields
VioaL(R) ~ he x 0.27 cm~!, which corresponds to the range
of Ry = 0.37(2)ay we obtained.

APPENDIX B: SURVIVAL PROBABILITIES

The evaluation of survival probabilities within the IOSA
framework on the attractive excited potential V,(R) of
the |2| = 1/2 Ca(4s4p 'P)) + Yb*(6s 251/2) channel due to
spontaneous decay of the Ca !P; state can be treated with
rate equations for populations derived from the optical Bloch
equations [36,46]. Here, the atom pair decays back to the
ground-state potential V,(R) of the [Q2] = 1/2 Ca(4s*'Sy) +
Ybt(6s2S) ,2) channel. In a MOT we can assume that the
coherence between the Ca 'S, and the Ca 'P; states decays
much more rapidly than those of the populations. Moreover,
at our temperatures where a large number of relative orbital
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angular momenta £ contribute, the relative nuclear motion for
the purpose of estimating the survival probability can be de-
scribed by classical evolution R(¢) on the potential U, (R; L) =
V.(R) + F*L(L + 1)/(2uR?) from the excitation region at
(very) large separation at t = 0 to R, & 40ay, the separation
where charge transfer occurs. At t+ =0 the atom pair has
relative kinetic energy E and is moving towards smaller R.
Under these assumptions we have for pathway I

dpe (1) ) 1,
ar =—Fpe(t)—r(t)pe(t)+§r(t)pg(t) (BI)

and po(t) + 3p.(t) = 1, where p,(t) and p.(t) are the popula-
tions in the ground- and excited-state channels, respectively.
Here, I is the natural line width of Ca('P,), and
_r
DAE@? +y?

I'e)=A (B2)
describes the stimulated absorption and emission rate of MOT
photons, where y = I'/2 and the time-dependent AE(t) =
Ve(R(t)) — V4(R(t)) — hawmor at separation R(¢). The last term
on the right-hand side of Eq. (B1) accounts for processes
where, after a spontaneous emission event, the atom pair is
again excited and participates in the charge-transfer collision.
The factor of one-third in this term accounts for the fact that
only one-third of the photons are able to excite the system
back to the attractive excited channels.

The constant Ar is set such that the steady-state solution
of Eq. (B1) for R — oo reproduces the experimental fraction

of atom pairs in the |Q2| = 1/2 excited potential V,(R), i.e.,
Pelr—o0o = 1n/3, where 7 is the fraction of Ca atoms in the Ip,
state. For the MOT parameters in Ref. [37] AE — —T for
R — oo and n = 0.092.

In practice, we do not solve Eq. (B1) directly but rephrase
the equation into one for separation R by noting that
dt = dR/v(R; E, L), where the velocity v(R; E, L) satisfies
wv?/2+U.(R;L) =E for each R. The radial differential
equation can be integrated from very large R to crossing point
R, to obtain the survival probability p;(E, £) for pathway I.

Our second pathway is also affected by spontaneous decay
of the excited channels. In this case the excitation occurs
near R, =~ 1200qa,. The stimulated excitation and decay are
already included in the close-coupling calculations when the
light coupling is included and the asymptotic basis functions
diagonalized and, thus, do not need to be included here. We
then find the simpler differential equation

dp.() _
o = Tp), (B3)

which is transformed into one for R and solved from R = R,
with p.(R,) =1 to R, assuming an initial kinetic energy E
and average partial wave L. The final value at R, defines the
survival probability p(E, £) for this pathway. The differen-
tial equation for the third pathway is the same as for pathway
IL, but now the excitation separation is even smaller and we
find that the py(E, £) are larger than 0.1 for the detunings
considered here.

[1] R. Coté and A. Dalgarno, Phys. Rev. A 62, 012709 (2000).

[2] A. Watanabe, C. M. Dutta, P. Nordlander, M. Kimura, and A.
Dalgarno, Phys. Rev. A 66, 044701 (2002).

[3] L. B. Zhao, P. C. Stancil, J. P. Gu, H. Liebermann, Y. Li,
P. Funke, R. J. Buenker, B. Zygelman, M. Kimura, and A.
Dalgarno, Astrophys. J. 615, 1063 (2004).

[4] A. T. Grier, M. Cetina, F. Orucevié, and V. Vuleti¢, Phys. Rev.
Lett. 102, 223201 (2009).

[5] P. Zhang, E. Bodo, and A. Dalgarno, J. Phys. Chem. A 113,
15085 (2009).

[6] Z. Idziaszek, T. Calarco, P. S. Julienne, and A. Simoni, Phys.
Rev. A79, 010702(R) (2009).

[7] C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and M. Kohl,
Phys. Rev. Lett. 105, 133201 (2010).

[8] S. Schmid, A. Hirter, and J. H. Denschlag, Phys. Rev. Lett. 105,
133202 (2010).

[9] E. H. J. Hall, M. Aymar, N. Bouloufa-Maafa, O. Dulieu, and S.
Willitsch, Phys. Rev. Lett. 107, 243202 (2011).

[10] X.J. Liu, Y. Z. Qu, B. J. Xiao, C. H. Liu, Y. Zhou, J. G. Wang,
and R. J. Buenker, Phys. Rev. A 81, 022717 (2010).

[11] P. Zhang, A. Dalgarno, R. Cote, and E. Bodo, Phys. Chem.
Chem. Phys. 13, 19026 (2011).

[12] M. Tacconi, F. A. Gianturco, and A. K. Belyaev, Phys. Chem.
Chem. Phys. 13, 19156 (2011).

[13] W. G. Rellergert, S. T. Sullivan, S. Kotochigova, A. Petrov, K.
Chen, S.J. Schowalter, and E. R. Hudson, Phys. Rev. Lett. 107,
243201 (2011).

[14] H. D. L. Lamb, J. F. McCann, B. M. McLaughlin, J. Goold, N.
Wells, and I. Lane, Phys. Rev. A 86, 022716 (2012).

[15] A. K. Belyaev, S. A. Yakovleva, M. Tacconi, and F. A.
Gianturco, Phys. Rev. A 85, 042716 (2012).

[16] E. R. Sayfutyarova, A. A. Buchachenko, S. A. Yakovleva, and
A. K. Belyaev, Phys. Rev. A 87, 052717 (2013).

[17] B. M. McLaughlin, H. D. L. Lamb, I. Lane, and J. F. McCann,
J. Phys. B 47, 145201 (2014).

[18] S. Haze, R. Saito, M. Fujinaga, and T. Mukaiyama, Phys. Rev.
A 91, 032709 (2015).

[19] S. T. Sullivan, W. G. Rellergert, S. Kotochigova, and E. R.
Hudson, Phys. Rev. Lett. 109, 223002 (2012).

[20] P. Puri, M. Mills, C. Schneider, I. Simbotin, J. A. Montgomery,
R. Coté, A. G. Suits, and E. R. Hudson, Science 357, 1370
(2017).

[21] E. E. Nikitin, in Springer Handbooks of Atomic, Molecular, and
Optical Physics, edited by G. W. F. Drake (Springer, New York,
2006), pp. 741-752.

[22] B. Zygelman, Z. Lucic, and E. R. Hudson, J. Phys. B: At. Mol.
Opt. Phys. 47, 015301 (2014).

[23] M. Tomza, C. P. Koch, and R. Moszynski, Phys. Rev. A 91,
042706 (2015).

[24] B. Gao, Phys. Rev. A 83, 062712 (2011).

[25] R. T. Pack, J. Chem. Phys. 60, 633 (1974).

[26] D. Secrest, J. Chem. Phys. 62, 710 (1975).

[27] L. W. Hunter, J. Chem. Phys. 62, 2855 (1975).

[28] D.J. Kouri, in Atom—Molecule Collision Theory, edited by R. B.
Bernstein (Springer, New York, 1979), pp. 301-358.

[29] R. G. Gordon, J. Chem. Phys. 51, 14 (1969).

[30] H. Werner and W. Meyer, J. Chem. Phys. 74, 5802
(1981).

062706-8


https://doi.org/10.1103/PhysRevA.62.012709
https://doi.org/10.1103/PhysRevA.62.012709
https://doi.org/10.1103/PhysRevA.62.012709
https://doi.org/10.1103/PhysRevA.62.012709
https://doi.org/10.1103/PhysRevA.66.044701
https://doi.org/10.1103/PhysRevA.66.044701
https://doi.org/10.1103/PhysRevA.66.044701
https://doi.org/10.1103/PhysRevA.66.044701
https://doi.org/10.1086/424729
https://doi.org/10.1086/424729
https://doi.org/10.1086/424729
https://doi.org/10.1086/424729
https://doi.org/10.1103/PhysRevLett.102.223201
https://doi.org/10.1103/PhysRevLett.102.223201
https://doi.org/10.1103/PhysRevLett.102.223201
https://doi.org/10.1103/PhysRevLett.102.223201
https://doi.org/10.1021/jp905184a
https://doi.org/10.1021/jp905184a
https://doi.org/10.1021/jp905184a
https://doi.org/10.1021/jp905184a
https://doi.org/10.1103/PhysRevA.79.010702
https://doi.org/10.1103/PhysRevA.79.010702
https://doi.org/10.1103/PhysRevA.79.010702
https://doi.org/10.1103/PhysRevA.79.010702
https://doi.org/10.1103/PhysRevLett.105.133201
https://doi.org/10.1103/PhysRevLett.105.133201
https://doi.org/10.1103/PhysRevLett.105.133201
https://doi.org/10.1103/PhysRevLett.105.133201
https://doi.org/10.1103/PhysRevLett.105.133202
https://doi.org/10.1103/PhysRevLett.105.133202
https://doi.org/10.1103/PhysRevLett.105.133202
https://doi.org/10.1103/PhysRevLett.105.133202
https://doi.org/10.1103/PhysRevLett.107.243202
https://doi.org/10.1103/PhysRevLett.107.243202
https://doi.org/10.1103/PhysRevLett.107.243202
https://doi.org/10.1103/PhysRevLett.107.243202
https://doi.org/10.1103/PhysRevA.81.022717
https://doi.org/10.1103/PhysRevA.81.022717
https://doi.org/10.1103/PhysRevA.81.022717
https://doi.org/10.1103/PhysRevA.81.022717
https://doi.org/10.1039/c1cp21494b
https://doi.org/10.1039/c1cp21494b
https://doi.org/10.1039/c1cp21494b
https://doi.org/10.1039/c1cp21494b
https://doi.org/10.1039/c1cp20916g
https://doi.org/10.1039/c1cp20916g
https://doi.org/10.1039/c1cp20916g
https://doi.org/10.1039/c1cp20916g
https://doi.org/10.1103/PhysRevLett.107.243201
https://doi.org/10.1103/PhysRevLett.107.243201
https://doi.org/10.1103/PhysRevLett.107.243201
https://doi.org/10.1103/PhysRevLett.107.243201
https://doi.org/10.1103/PhysRevA.86.022716
https://doi.org/10.1103/PhysRevA.86.022716
https://doi.org/10.1103/PhysRevA.86.022716
https://doi.org/10.1103/PhysRevA.86.022716
https://doi.org/10.1103/PhysRevA.85.042716
https://doi.org/10.1103/PhysRevA.85.042716
https://doi.org/10.1103/PhysRevA.85.042716
https://doi.org/10.1103/PhysRevA.85.042716
https://doi.org/10.1103/PhysRevA.87.052717
https://doi.org/10.1103/PhysRevA.87.052717
https://doi.org/10.1103/PhysRevA.87.052717
https://doi.org/10.1103/PhysRevA.87.052717
https://doi.org/10.1088/0953-4075/47/14/145201
https://doi.org/10.1088/0953-4075/47/14/145201
https://doi.org/10.1088/0953-4075/47/14/145201
https://doi.org/10.1088/0953-4075/47/14/145201
https://doi.org/10.1103/PhysRevA.91.032709
https://doi.org/10.1103/PhysRevA.91.032709
https://doi.org/10.1103/PhysRevA.91.032709
https://doi.org/10.1103/PhysRevA.91.032709
https://doi.org/10.1103/PhysRevLett.109.223002
https://doi.org/10.1103/PhysRevLett.109.223002
https://doi.org/10.1103/PhysRevLett.109.223002
https://doi.org/10.1103/PhysRevLett.109.223002
https://doi.org/10.1126/science.aan4701
https://doi.org/10.1126/science.aan4701
https://doi.org/10.1126/science.aan4701
https://doi.org/10.1126/science.aan4701
https://doi.org/10.1088/0953-4075/47/1/015301
https://doi.org/10.1088/0953-4075/47/1/015301
https://doi.org/10.1088/0953-4075/47/1/015301
https://doi.org/10.1088/0953-4075/47/1/015301
https://doi.org/10.1103/PhysRevA.91.042706
https://doi.org/10.1103/PhysRevA.91.042706
https://doi.org/10.1103/PhysRevA.91.042706
https://doi.org/10.1103/PhysRevA.91.042706
https://doi.org/10.1103/PhysRevA.83.062712
https://doi.org/10.1103/PhysRevA.83.062712
https://doi.org/10.1103/PhysRevA.83.062712
https://doi.org/10.1103/PhysRevA.83.062712
https://doi.org/10.1063/1.1681085
https://doi.org/10.1063/1.1681085
https://doi.org/10.1063/1.1681085
https://doi.org/10.1063/1.1681085
https://doi.org/10.1063/1.430475
https://doi.org/10.1063/1.430475
https://doi.org/10.1063/1.430475
https://doi.org/10.1063/1.430475
https://doi.org/10.1063/1.430823
https://doi.org/10.1063/1.430823
https://doi.org/10.1063/1.430823
https://doi.org/10.1063/1.430823
https://doi.org/10.1063/1.1671699
https://doi.org/10.1063/1.1671699
https://doi.org/10.1063/1.1671699
https://doi.org/10.1063/1.1671699
https://doi.org/10.1063/1.440893
https://doi.org/10.1063/1.440893
https://doi.org/10.1063/1.440893
https://doi.org/10.1063/1.440893

EXCITATION-ASSISTED NONADIABATIC CHARGE- ...

PHYSICAL REVIEW A 99, 062706 (2019)

[31] A. Petrov, C. Makrides, and S. Kotochigova, J. Chem. Phys.
146, 084304 (2017).

[32] Y. Yu and A. Derevianko, At. Data Nucl. Data Tables 119, 263
(2018).

[33] A. Gallagher and D. E. Pritchard, Phys. Rev. Lett. 63, 957
(1989).

[34] P. Julienne, A. Smith, and K. Burnett, in Advances In Atomic,
Molecular, and Optical Physics, edited by D. Bates and B.
Bederson (Academic Press, 1992), pp. 141-198.

[35] H. M. J. M. Boesten, B. J. Verhaar, and E. Tiesinga, Phys. Rev.
A 48, 1428 (1993).

[36] K.-A. Suominen, M. J. Holland, K. Burnett, and P. S. Julienne,
Phys. Rev. A 49, 3897 (1994).

[37] M. Mills, P. Puri, M. Li, S. J. Schowalter, A. Dunning, C.
Schneider, S. Kotochigova, and E. R. Hudson, Phys. Rev. Lett.
122, 233401 (2019).

[38] K. Tang, J. P. Toennies, and C. L. Yiu, Int. Rev. Phys. Chem.
17, 363 (1998).

[39] R. Thomas, M. Chilcott, E. Tiesinga, A. B. Deb, and N.
Kjergaard, Nat. Commun. 9, 4895 (2018).

[40] J. Mitroy and J.-Y. Zhang, J. Chem. Phys. 128, 134305
(2008).

[41] A. Derevianko, Phys. Rev. Lett. 87, 023002 (2001).

[42] A. A. Buchachenko, Eur. Phys. J. D 61, 291 (2011).

[43] S. C. Ceraulo and R. S. Berry, Phys. Rev. A 44, 4145 (1991).

[44] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B: At.
Mol. Opt. Phys. 43, 202001 (2010).

[45] C. J. Bowers, D. Budker, S. J. Freedman, G. Gwinner,
J. E. Stalnaker, and D. DeMille, Phys. Rev. A 59, 3513
(1999).

[46] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Afom-
Photon Interactions (Wiley-Blackwell, 2008), pp. 353—405.

062706-9


https://doi.org/10.1063/1.4976972
https://doi.org/10.1063/1.4976972
https://doi.org/10.1063/1.4976972
https://doi.org/10.1063/1.4976972
https://doi.org/10.1016/j.adt.2017.03.002
https://doi.org/10.1016/j.adt.2017.03.002
https://doi.org/10.1016/j.adt.2017.03.002
https://doi.org/10.1016/j.adt.2017.03.002
https://doi.org/10.1103/PhysRevLett.63.957
https://doi.org/10.1103/PhysRevLett.63.957
https://doi.org/10.1103/PhysRevLett.63.957
https://doi.org/10.1103/PhysRevLett.63.957
https://doi.org/10.1103/PhysRevA.48.1428
https://doi.org/10.1103/PhysRevA.48.1428
https://doi.org/10.1103/PhysRevA.48.1428
https://doi.org/10.1103/PhysRevA.48.1428
https://doi.org/10.1103/PhysRevA.49.3897
https://doi.org/10.1103/PhysRevA.49.3897
https://doi.org/10.1103/PhysRevA.49.3897
https://doi.org/10.1103/PhysRevA.49.3897
https://doi.org/10.1103/PhysRevLett.122.233401
https://doi.org/10.1103/PhysRevLett.122.233401
https://doi.org/10.1103/PhysRevLett.122.233401
https://doi.org/10.1103/PhysRevLett.122.233401
https://doi.org/10.1080/014423598230090
https://doi.org/10.1080/014423598230090
https://doi.org/10.1080/014423598230090
https://doi.org/10.1080/014423598230090
https://doi.org/10.1038/s41467-018-07375-8
https://doi.org/10.1038/s41467-018-07375-8
https://doi.org/10.1038/s41467-018-07375-8
https://doi.org/10.1038/s41467-018-07375-8
https://doi.org/10.1063/1.2841470
https://doi.org/10.1063/1.2841470
https://doi.org/10.1063/1.2841470
https://doi.org/10.1063/1.2841470
https://doi.org/10.1103/PhysRevLett.87.023002
https://doi.org/10.1103/PhysRevLett.87.023002
https://doi.org/10.1103/PhysRevLett.87.023002
https://doi.org/10.1103/PhysRevLett.87.023002
https://doi.org/10.1140/epjd/e2010-10413-7
https://doi.org/10.1140/epjd/e2010-10413-7
https://doi.org/10.1140/epjd/e2010-10413-7
https://doi.org/10.1140/epjd/e2010-10413-7
https://doi.org/10.1103/PhysRevA.44.4145
https://doi.org/10.1103/PhysRevA.44.4145
https://doi.org/10.1103/PhysRevA.44.4145
https://doi.org/10.1103/PhysRevA.44.4145
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1103/PhysRevA.59.3513
https://doi.org/10.1103/PhysRevA.59.3513
https://doi.org/10.1103/PhysRevA.59.3513
https://doi.org/10.1103/PhysRevA.59.3513

