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We present spectroscopic data on moderately bound levels in the Cs2 a 3�+
u state. The data have sufficient

resolution to be sensitive to rotational and second-order spin-orbit splittings as well as hyperfine and vibrational
structure. Quantum numbers are assigned to the levels via selection rules and a global fit to other available data for
the a 3�+

u and coupled X 1�+
g states. The analysis focuses in particular on nearly degenerate pairs of a and X state

levels, energy differences between which can be highly sensitive to possible variations in the electron-to-proton
mass ratio [cf. DeMille et al., Phys. Rev. Lett. 100, 043202 (2008)]. We also characterize the electric (E1) and
magnetic (M1) dipole transition strengths between nearly degenerate a and X rovibrational levels and find that
both types of transitions are feasible with current technology and could give complementary information.
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I. INTRODUCTION

Several recent papers [1,2] have pointed out the possibility
of using measurements of molecular energy splittings as a
sensitive probe for possible variations in the electron-to-proton
mass ratio, μ ≡ me/mp. The essential point of these proposals
is that molecular electronic potentials are determined primarily
by electrostatics and hence depend parametrically on the
Rydberg energy, R (independent of the proton mass mp);
while molecular vibrational and rotational energies depend
on the molecular reduced mass, which is dominated by the
mass of the constituent nuclei and hence is proportional to
mp. For example, molecular vibrational frequencies scale
parametrically as R√

μ. Therefore, if μ were to vary, the
energy of a molecular vibrational state would change relative
to the potential well itself. Moreover, the size of this variation
can grow as the vibrational quantum number increases within a
single molecular potential (up to a maximum given by roughly
3/4 of the dissociation energy [1]).

In Ref. [1] a potentially advantageous situation is discussed,
which uses the existence of more than one molecular electronic
potential to amplify the sensitivity to variations in μ. In
particular, here the strategy is to find pairs of closely spaced
molecular levels: one associated with a high-lying vibrational
state of the ground-state electronic potential, and the other
associated with a low vibrational state of an excited potential
(associated with a long-lived electronic state). As discussed in
detail in Ref. [1], measurements of the energy splitting between
such a pair can provide both a high absolute sensitivity to

variations in μ (from the high-lying vibrational level) and good
relative insensitivity to experimental errors (due to the small
transition frequency between the levels). Bialkali molecules
were pointed out as an example of this behavior, since in
these species there exists a relatively deeply bound absolute
ground state (the X 1�+

g state) that overlaps with a shallow
excited state potential (the a 3�+

u state) that converges to the
same atomic asymptote. Such molecules also seem particularly
attractive for this application, since it has been demonstrated
that they can be produced at ultracold temperatures, allowing
narrow linewidths and hence excellent sensitivity to energy
shifts. In Ref. [1], the specific case of Cs2 was discussed and
one example of a near degeneracy of the desired type was
presented.

Here we present spectroscopic data (described in more
detail in Ref. [3]) that provides precision information on
several levels of the Cs2 a state, as well as on the relative
position of nearby levels of the X state. We also present a
global fit to most available spectroscopic data on the Cs2

a state, which yields a potential curve suitable for use in
predicting possible a − X near degeneracies that have not yet
been observed. We also predict electric and magnetic dipole
transition strengths between a and X state sublevels that could
be useful for precise measurements of their splitting.

Our analysis of vibrational, rotational, hyperfine, and
second-order spin-orbit structure in the Cs2 a 3�+

u state may
be compared with previous studies of the analogous state in
Na2 [4,5], NaRb [6], NaCs [7], LiCs [8], KRb [9], and Rb2 [10].
Some of these studies used Fourier transform spectroscopy
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from chosen excited states to access a wide range of a state
levels, with resolution typically 0.03 cm−1. Other methods,
as described in Refs. [4,5,10], were able to achieve line
uncertainties as small as 15 MHz and thus obtained more
detailed information on the hyperfine structure.

The observations analyzed here come from two sources.
The first is the data set reported here, from 6 vibrational
levels (v = 28–31, 37, 38) extending over binding energies Eb

between −50 cm−1 and −14 cm−1. We measured 22 energy
level differences to 30 MHz and 6 absolute binding energies to
340 to 420 MHz (one standard deviation combined statistical
and systematic uncertainties are given). The second source is
information on the Cs2 a 3�+

u state from the work of Li, Xie
et al. [11,12] who obtained data on 1440 rovibrational levels
observed by emission from an electronically excited triplet
state. Although hyperfine structure was not resolved, these
observations did yield much improved values for the a state
dissociation energy and equilibrium internuclear distance, Re.

Other data in the literature that are relevant to the Cs2a
3�+

u

state, but which are not included in the present analysis,
include data on Feshbach resonances observed by [13–15] and
subject to careful analysis by [16,17], yielding information
on the hyperfine structure of weakly bound levels. Also, [18]
reported data on more than 100 hyperfine-rotation levels with
uncertainties of 12 to 24 MHz, extending down to 2.5 cm−1

below the lowest (fa + fb = 3 + 3) atomic hyperfine limit. In
the future, we hope to include these data together with the
present data set in a combined analysis. However, there are
numerical complications with a more comprehensive analysis.

Because our analysis incorporates hyperfine-mediated cou-
plings between nearly degenerate a and X state levels, we also
summarize the Cs2 X state spectroscopic data. There exist
a series of progressively more extensive observations of this
state, culminating in the observations of Amiot and Dulieu
[19]. From this reference an RKR (Rydberg-Klein-Rees [20])
potential curve for the X state is available that extends up to
about 50 cm−1 below the dissociation limit. The long range
potential terms (dispersion and exchange terms) were also
estimated by [19] and further refined by [18]. Weickenmeier
et al. [21] observed splittings of X state levels with vibrational
quantum number, v = 130 to 137 and rotational quantum
number, J = 17 to 55, induced by coupling with the a

state. Another piece of useful information is the precise
determination of the dissociation limit of the Cs2 X 1�+

g state
by Danzl et al. [22]. There has been a careful reanalysis of the
X state potential by [23] using a direct fit to analytic potential
forms, and this achieved a more exact fit to the data of [19].
However, because in the present work we are modeling both X

and a state data, we prefer to introduce an exchange potential
explicitly, which is not easily achieved with these analytic
forms. Our potential forms are discussed in Sec. III. For the X

state, we retain the inverted perturbation approach (IPA [24])
potential of [19], which is an extension and refinement of
the RKR potential, and make only slight adjustments in the
long-range potential parameters of [18] to be compatible with
the improved dissociation limit of [22].

To a first approximation, the experimental observations
reported here are consistent with a simple model of hyperfine
structure (hfs) with no singlet-triplet mixing and no second-
order spin-orbit terms. Our more detailed analysis shows that

singlet-triplet mixing by hyperfine effects and also second-
order spin-orbit terms are needed to model the data accurately.
For a presentation of extensive precision measurements of
hyperfine effects in a molecular 3�+

u state other than an
alkali-metal dimer, see, for example, work on the N2a

3�+
u

metastable state in Refs. [25,26].
Below, we first describe the experimental methods and

results (Sec. II), then develop the theoretical model in several
steps and apply it to the data (Secs. III–V). In Sec. VI
we present some implications of our results for performing
measurements sensitive to the electron-proton mass ratio.

II. EXPERIMENTAL METHOD

We experimentally locate deeply bound a 3�+
u levels using

two-color photoassociation (PA) spectroscopy [18,27]. The
basic approach is shown in Fig. 1. A continuous-wave (cw) PA
laser resonantly excites pairs of ultracold Cs atoms into a bound
state of the short-lived Cs2 0−

g (6P3/2) potential (dissociating
to the 6 2S1/2 + 6 2P3/2 asymptote) [28]. This state decays to
a manifold of metastable a 3�+

u vibrational levels, which are
ionized by a pulsed laser after a period of PA. A tunable cw
probe laser also is applied, at the same time as the PA laser,
to search for resonances between the desired a 3�+

u levels and
the 0−

g (6P3/2) level excited by the PA laser. On resonance, the
probe laser causes an Autler-Townes splitting which (if the
coupling is sufficiently strong) effectively shifts the excited
state out of resonance with the PA laser and thereby decreases
the rate of molecule formation. Hence, we scan the probe laser
frequency and look for resonant depletion of the ion signal.
Use of PA levels in the pure long-range well of the 0−

g (6P3/2)
state enables access to deeply bound a 3�+

u levels, because of
favorable Franck-Condon factors [29,30].

Ultracold Cs atoms are collected in a forced dark-spot
magneto-optical trap (MOT) [31,32]. Under typical condi-
tions, the Cs atom density n, atom number N , and temperature
T are n ≈ 4 × 1011 cm−3, N ≈ 2 × 108, and T ≈ 100–
200 μK. After a period of collection in the MOT, the Cs atoms
are released and optically pumped into the 6 2S1/2 f =mf =4
“spin-stretched” state. This spin polarization is crucial to our

FIG. 1. (Color online) The relevant potential energy curves of Cs2

and an overview of the optical transitions used in the experiment.
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experiments. Since the Cs20−
g (6P3/2) state has unresolved hfs,

PA of unpolarized atoms in the MOT leads to excitation
of an incoherent mixture of many degenerate nuclear spin
orientations. Because the hfs is fully resolved in the Cs2

a 3�+
u state, even when the probe laser is tuned to a given

bound-bound resonance, only a small fraction of the molecular
population can be affected by the probe. Due to the significant
shot-to-shot noise in ionization signals, such small fractional
depletion signals prove very difficult to observe. By contrast,
using a nuclear spin-polarized sample enables us to find probe
transitions that couple to the entire excited-state population
and hence lead to observably large depletion signals.

The time sequence of the experiment is as follows. After
loading the dark SPOT MOT for ≈96 ms, the trapping laser
beams are turned off at time t = 0. At the same time, a “fill-in”
laser beam tuned to the atomic 6 2S1/2f =3 → 6 2P3/2f

′ =4
frequency is turned on, in order to pump all population
into the f = 4 state from the dark f = 3 state (where most
atoms reside in the dark SPOT MOT). Simultaneously, the
magnetic field gradient of the MOT is switched off, and
replaced with a uniform B field that gradually builds up
to a value B ≈ 0.4 mT (where 0.1 mT = 1 G) along the z

axis, reaching its final value within ≈1 ms. At t = 1 ms, an
additional “polarizing” laser beam, σ+ polarized and tuned
to the 6 2S1/2f =4 → 6 2P3/2f

′ =4 transition, is switched on.
The fill-in and polarizing beams serve to prepare the Cs atoms
in the f = 4,mf = 4 state. The PA and probe lasers, each
directed along the z axis and circularly polarized, are turned
on at t = 1.5 ms and stay on until t = 4 ms. Then, at t = 4.1
ms, the ionizing laser pulse is applied. The entire sequence
repeats at 10 Hz repetition rate.

The external cavity diode laser used for PA is frequency
stabilized by locking to a confocal Fabry-Perot interferometer
(FPI), which is, in turn, locked to a MOT laser. The probe
laser is a tunable Ti:sapphire laser, whose beam is spatially
overlapped with the PA laser and the Cs atom cloud in
the MOT; the probe has intensity Iprobe ≈ 10 W/cm2 at the
interaction region. A pulsed dye laser generates the light for
photoionization of the Cs2 molecules formed after decay of
the PA state. The ionization scheme [33] uses pulses with
duration ≈5 ns and energy ≈15 mJ at wavelength ≈716 nm to
simultaneously ionize a wide range of high-lying vibrational
levels of the a 3�+

u state formed via PA. The resulting Cs2
+

ions are mass-selectively detected via their time of arrival on
a channeltron ion multiplier. At each probe laser frequency
the data is typically averaged over ten preparation-detection
sequences. The probe laser is stepped by 7.5 MHz. Sensitivity
to depletion in the ion signal, resulting from the probe laser,
is optimal when the channeltron gain is adjusted to ensure it
operates in a linear regime (i.e., the output is not saturated).
We confirm detector linearity by reproducing the two-color
PA spectra of [18,34,35], using the 1u (6 2S1/2 + 6 2P3/2) state
of Cs2 as the intermediate resonance. We also confirm the
spin-polarization of the atoms by reproducing the PA spectra
from polarized atoms observed in Ref. [36]. Figure 2 shows a
typical ion depletion signal as the probe laser is tuned through
a resonance. Other experimental data scans are shown in Fig. 8.

Initial state identification and approximate quantum num-
bers are assigned to each a 3�+

u level, according to the
following logic. To first approximation, moderately bound

Io
n 

S
ig

na
l (

V
)

-1224.75 -1224.65 -1224.60-1224.70

1.0

0.5

0.0

E  (ν) from the HF barycenter (GHz)Β

FIG. 2. (Color online) Typical plot of ion signal vs probe laser
frequency. Shown here is a scan over the rotation-hyperfine “anchor
line” for v = 30, with nominal quantum numbers f = 8, � = 0, F =
8, at binding energy Eb = −1224.670 GHz.

levels of the a 3�+
u state can be described as eigenstates in

the eSI,f basis |[(S,I )f,�],FMF 〉, where I is the total spin of
the pair of Cs nuclei, S is the total electron spin, f ≡ S + I;
� is the rotational angular momentum, F ≡ f + �, and MF is
the projection of F. In our notation, the parentheses in (S,I )f
indicate that S and I are coupled to form f, while the brackets
indicate that f and � are coupled to form F. For pure a 3�+

u

states, S = 1 and the hfs interaction dominates the sublevel
structure within a given vibrational level, splitting levels with
different f according to Ehf = Ahf

4 [f (f + 1) − S(S + 1) −
I (I + 1)], where Ahf = 2.295 67 GHz is the atomic Cs 6s1/2

hfs constant [37]. For each value of f , there is a manifold of
closely spaced rotational states with energy Bv�(� + 1), where
Bv ≈ 0.1 GHz. Finally, the degeneracy between states with
the same � and f , but different F , is lifted by a second-order
spin-orbit (SO2) interaction whose effect on the states studied
here is somewhat smaller than the rotational energy [38]. In
the present discussion, the notation f ≡ I + S applies to atomic
states as well as the molecular states.

The difference between the frequencies of the resonant
probe and PA lasers yields the binding energy for the a 3�+

u

level, relative to the initial state of two free Cs atoms in the
6 2S1/2,f = 4 level. For convenience, we report the binding
energy Eb relative to the hfs barycenter, located 8.04 GHz
below the 6 2S1/2f =4 + 6 2S1/2f =4 asymptote. The absolute
PA laser frequency is known since it is tuned to rotational levels
of the Cs2 0−

g (6P3/2) state whose energies were measured
previously [28]. The actual observed 0−

g (6P3/2) energy level
positions (previously unpublished, but communicated to us
by N. Bouloufa and O. Dulieu), as well as the most recent
potential for the 0−

g (6P3/2) state from [39] are given in the
Supplemental Material [40]. The positions of these levels are
independently confirmed in our laboratory, at lower accuracy,
using a commercial wave meter. The probe laser frequency
on resonance is determined for a few lines with this wave
meter, but usually (more accurately) as follows. Within each
observed vibrational level in the a 3�+

u state, one strong
probe resonance is designated as the “anchor” line. (This
is the line corresponding to the least bound of the � = 0
sublevels of the vibrational state observed with σ+-polarized
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probe light, which is assigned to the f = 8, � = 0, F = 8
hyperfine and rotational sublevel of the a 3�+

u state.) The
probe laser frequency at the anchor line is first determined
crudely with the wave meter. Based on this determination a
known, nearby one-photon PA resonance is found and chosen
to act as a frequency reference. The probe laser is tuned from
this reference line to the anchor line, while monitoring its
transmission through a scanning confocal FPI with 1 GHz free
spectral range (FSR). By measuring the (noninteger) number
of FSRs traversed, the position of the anchor line with respect
to the reference line (referred to as “FPI offset”) is determined.
Finally, the positions of other hyperfine-rotational sublevels
within the same vibrational state are determined, relative to
the anchor line, by the same method.

Uncertainties in the level positions are evaluated as follows.
The excited-state energies used for the PA and reference lines
are known to 150–300 MHz from Ref. [28], while the absolute
uncertainty in our wave meter is 600 MHz. Errors in the FPI
offset are much smaller than both of these, so the uncertainty
in binding energy Eb is the quadrature sum of the uncertainties
in the PA and reference (or directly measured probe) lines. For
a few cases, the energy of a a 3�+

u level is measured using two
different intermediate PA levels (and the two correspondingly
different probe frequencies). The energy determined by both
routes is consistent within the uncertainties. Uncertainties in
the relative energy of hyperfine-rotational sublevels within
a vibrational level, determined by the FPI offset method,
are much smaller. They are dominated by the uncertainty in
locating the peak position of each line, which—due to limited
signal-to-noise—we take as the half width at half maximum of
the line, which is typically ≈20 MHz. Additional errors due,
for example, to uncertainty in the FPI FSR, nonlinearity in the
FPI or probe laser tuning mechanism, etc., are estimated to be
negligible. Zeeman levels shifts due to the 0.4 mT (=4 G) bias
field are also negligible, and henceforth we ignore Zeeman
shifts unless explicitly stated otherwise.

In our experiment we start with ultracold pairs of spin-
polarized Cs atoms. Consequently, the initial state of the
pair has f = mf = 8, and only pairs with � = 0 are excited
by the PA laser. Hence, initially F = MF = 8. Vibrational
levels of the Hund’s case (c) 0−

g (6P3/2) state have resolved
rotational levels J ′, where J′ = �′ + S′ + L′, L′ = 1 is the
electron orbital angular momentum, and S ′ = 1. The PA
laser is tuned to excite J ′ = 2 levels, which are a mixture
of �′ = 0,2, and 4 [41]. The PA laser is σ+ polarized, so
electric dipole (E1) selection rules ensure F ′ = M ′

F = 9.
Since F′ = J′ + I′ and F ′ = 9, only I ′ = 7 is excited. For
the probe laser, either σ+ or σ− polarization is used. From
E1 selection rules for the probe transition, it follows that
only a 3�+

u states with I = 7, � = 0,2,4, and F = MF = 10
(F = 8,9,10, MF = 8) are observed with probe polarization
σ− (σ+). Figure 3 summarizes the approximate quantum
numbers and E1 selection rules graphically.

We observe multiple sublevels for several a 3�+
u vibrational

states v with binding energy Eb(v) in the range −400 to
−1500 GHz. The level positions and line strengths qual-
itatively agree with calculations based on an initial a 3�+

u

potential constructed from the results of Ref. [18] and the
0−

g (6P3/2) potential of Ref. [39]. The predictions of vibrational
and rotational energies together with the approximate hfs

FIG. 3. The approximate quantum numbers of the scattering and
molecular states used in the experiment.

discussed above are used to guide an initial assignment of
quantum numbers to the observed states. In all we observe
28 energy levels across 6 vibrational states. The data are
summarized in Table II. Additional details (e.g., qualitative
measures of the line strengths) are given in Ref. [3]. As
discussed in Ref. [1] and also in more detail below, one of
the most striking features of our data is the appearance of
an “extra” line with F = 10 in the v = 37, f = 7 manifold
of states. We attribute this line to the presence of a near
degeneracy between a pair of a 3�+

u and X 1�+
g states and

an associated strong mixing between these states.

III. HAMILTONIAN

We now turn to the analysis of the data presented in the
previous section. The Hamiltonian for the Cs2 a and X states
may be written

H = HBO,η + Hkin + Hrot + Hhf + HSO2, (1)

where HBO,η(R) includes the Born-Oppenheimer potentials
for the two states, η = X 1�+

g and a 3�+
u ; Hkin represents the

kinetic energy of vibrational motion in R, the internuclear
separation; Hrot represents the rotational motion; Hhf the hfs
effects; and HSO2(R) the second-order spin orbit or effective
spin-spin term. The Hhf term has diagonal elements for the a

state and off-diagonal elements that can lead to mixing of the
a and X states.

The Born-Oppenheimer potentials in HBO,η(R) are modeled
with three regions, demarcated by RL and RR:

R � RL : VL(η,R) = C(η) + b(η)/R6;

RL < R < RR : VW (η,R); (2)

RR � R : VR(η,R) = Vdisp(R) + Vexch(η,R).
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C(η) and b(η) are adjusted to provide a smooth transition to
VW (η,R) at R = RL. For each electronic state, RL is chosen
such that VL(η,RL) lies adequately above the dissociation
energy. RR was fixed at 12 Å (where 1 Å = 10−10 m) for both
states, somewhat beyond the Le Roy radius [42] of 10.5 Å.

For the X 1�+
g state, VW (X 1�+

g ,R) was obtained from the
accurate RKR potential given in Ref. [19]. For the well region
of the a state, we use an expansion of the form [35,43]

VW (a3�+
u ,R) = Te +

I∑
i=2

ai

(
R − Re

R + bRe

)i

. (3)

Here Re is the internuclear distance at the minimum of the
potential of the electronic state in question. The parameter b

is adjusted to achieve an optimum fit with a minimum number
of parameters. The coefficients ai were determined by a fit to
the data of [12] combined with the data presented here. The
quality of the fit is discussed below.

The dispersion terms in VR are given by

Vdisp = −C6

R6
− C8

R8
− C10

R10
− C12

R12
. (4)

The CN parameters in our fits are those given by [18] with
slight adjustments (see below). For the exchange energy, we
use the form given in Ref. [19]:

Vexch = ±AexchR
γexch e−βexchR, (5)

where the +(−) sign applies to the a(X) state. The parameters
Aexch and βexch are adjusted to optimize the fit to the data. At the
same time, these parameters and the coefficients ai in VW must
be such that the transition between VW and VR is smooth (in its
value and in the derivatives). In light of these conditions and the
recent more accurate determination of the dissociation energy
of the X state by [22], our optimized dispersion parameters
differ slightly from previous values (see Table IV). Figure 4
displays potentials calculated from the above parameters as
obtained from the fitting process discussed below.

With regard to these potentials, we emphasize the goals
and limitations of this work, which focuses on the energy
region sampled by the data obtained in Ref. [3]. The analysis
in Ref. [23] obtained a comprehensive fit to the X data of [19],
superior to the IPA fit in Ref. [19] itself. Furthermore, as
stated above, Feshbach resonance data [13–15], the analysis
of [16,17], and the data of [18], together with the recent
redetermination of De(X) [22], provide a more precise
characterization of the long-range potentials. De is the energy
interval between the potential minimum and the hyperfine
center of gravity of the free atoms. A truly comprehensive
fit to Cs2 X and a state data remains a challenge. Our own
attempts with an analytic potential of the Morse long range
(MLR) form [44] did not yield a difference between the X

and a potentials that would converge to zero beyond the Le
Roy radius [42], at which the atomic wave function overlaps
become negligible, and therefore we chose to use an explicit
exchange potential.

The rotational energy operator involves the rotational
angular momentum operator �:

Hrot = h̄2

2μ

�2

R2
. (6)

FIG. 4. Potentials for the Cs2 X 1�+
g and a 3�+

u states with
vibrational numberings. The inset in panel (a) shows near-degenerate
levels of especial interest in this study.

Vibrational energies come from the operator for kinetic energy
along the internuclear axis,

Hkin = − h̄2

2μ

∂2

∂R2
; (7)

here, μ = M/2 is the reduced mass, where M is the atomic
mass. To evaluate the second derivative, we use the discrete
variable representation (DVR), employing a set, Ri , of discrete
grid points in R, as described in Ref. [45], with a scaling
function as in Ref. [46]. To obtain maximum accuracy for a
given mesh, all N grid points are used to calculate the second
derivative, and therefore one has an N × N Hamiltonian
matrix. Rovibrational eigenfunctions, labeled by |η �,v〉, may
be written |η�,v〉 = ∑

i |Ri〉〈Ri |η,�,v〉. Here the |Ri〉, each
an N -component vector with j th component δij , can be
considered a basis of position eigenstates or the set of grid
points.

In the approximation that hyperfine and second-order
spin-orbit effects are negligible, rovibrational energies
E(η,�,v) and eigenfunctions |η,�,v〉 are computed by di-
agonalizing DVR matrices H0η �, with matrix elements
H0η �

ij = 〈η �|〈Ri |HBO,η + Hkin + Hrot|Rj 〉|η �〉; nonzero off-
diagonal elements with i 	= j are produced by the sec-
ond derivative in Hkin. Thus, E(η �,v) = 〈η �,v|H0|η �,v〉.
DVR eigenvalues give the rovibrational energies without
the use of explicit centrifugal distortion parameters. Where
needed, the rotational constant for vibrational level v, Bv =
(h̄2/2μ)

∑
i〈η � = 0,v|R−2|η � = 0,v〉, can be explicitly cal-

culated via 〈Ri |R−2|Rj 〉 = δij /R
2
i .
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IV. HYPERFINE STRUCTURE

We discuss hfs effects with four modes or levels of
approximation. The first considers atoms at long range, in the
atomic limit. Second, we consider a model with no coupling
between triplet and singlet molecular states, hence with hfs
only in a states. Third, we consider triplet-singlet mixing.
Finally, we introduce second-order spin-orbit effects, which
couple electron spins to the rotation of the molecule.

We describe the atomic limit in the ef af b,f representation,
where fα is the sum of electron spin Sα = 1/2 and nuclear
spin Iα = 7/2 in Cs atom α = a,b. Basis elements in this
representation are denoted |(Sa,Ia)fa,(Sb,Ib)fb,f 〉, or simply
|(fa,fb)f 〉, in the molecular frame. The hyperfine Hamiltonian
of the pair of separated atoms is

Hhf = Ahf(Ia · Sa + Ib · Sb). (8)

We write the molecular hyperfine energies relative to the
molecular hyperfine center of gravity, fcg:

Ehf = 4Ahf(fa + fb − fcg); fcg = 2IA + 1

2IA + 1
, (9)

with fcg = 57/8 for two Cs atoms with IA = 7/2. The
molecular hfs center of gravity lies (9/2)Ahf = 10.334 56
GHz above the fa + fb = 3 + 3 limit. In these equations,
fα = Sα + Iα; S = Sa + Sb; I = Ia + Ib; f = fa + fb = S + I.

In principle, one can generalize Hhf in Eq. (8) to be
dependent on the internuclear distance R. At the accuracy
of the experimental data here we cannot justify this extension.
For the Na2 [4] and Rb2 [10] dimers, the R dependence has a
small but observable effect.

In the simplest approximation for the molecular hyperfine
Hamiltonian, Hhf = (Ahf /2)I · S, where I = 0,1, . . . ,7 and
S = 0 or 1. This interaction is diagonal in the eSI,f basis, with
energies as given in Sec. II:

Ehf(S,I,f ) = Ahf

4
[f (f + 1) − S(S + 1) − I (I + 1)].

(10)

The allowed values for I and S are limited by the symmetry
imposed by bosonic atoms in a homonuclear molecule to
I + S + � = even. For even � (positive parity), there are
three possible combinations of (S,I ) for f = 2, 4, and 6, as
determined by the triangle rule. Table I lists all possible states.
Note that for even �, singlet states occur in the Hamiltonian
matrices only for f = 0, 2, 4, and 6.

Figures 5(a) and 6(a), for the v = 37 and v = 38 vibrational
levels, respectively, show energy levels with this representation
as a function of � + f/10. The calculated energies are obtained
from a fit to the experimental data with a function E =
G(v) + B(v) + (Ahf/2)I · S. Since data on singlet states is
not available in this region and since this simplest molecular
hfs model includes no singlet-triplet coupling, nearby singlet
states are omitted in these plots, but are shown in Figs. 5(b)
and 6(b). The abscissa variable is chosen to present the hfs as
clearly as possible. Hyperfine levels for a given � are grouped
together, since f � 8, f/10 < 1. For each �, the hyperfine
levels for the 3�+

u state have three branches that separate from
each other linearly with f , proportional to Ahf .

TABLE I. Possible values for the f quantum number for the Cs2

X and a states and corresponding values of fa,fb,I,S and I · S =
(1/2)[f (f + 1) − S(S + 1) − I (I + 1)].

f [fa,fb] [S,I ] I · S (for S = 1)

Even �

0 [3,3],[4,4] [1,1],[0,0] −2
1 [3,4] [1,1] −1
2 [3,3],[3,4],[4,4] [0,2],[1,1],[1,3] 1,−4
3 [3,4] [1,3] −1
4 [3,3],[3,4],[4,4] [0,4],[1,3],[1,5] 3,−6
5 [3,4] [1,5] −1
6 [3,3],[3,4],[4,4] [0,6],[1,5],[1,7] 5,−8
7 [3,4] [1,7] −1
8 [4,4] [1,7] 7

Odd �

1 [3,3],[3,4],[4,4] [0,1],[1,0],[1,2] −3
2 [3,4] [1,2] −1
3 [3,3],[3,4],[4,4] [0,3],[1,2],[1,4] 2,−5
4 [3,4] [1,4] −1
5 [3,3],[3,4],[4,4] [0,5],[1,4],[1,6] 4,−7
6 [3,4] [1,6] −1
7 [3,4],[4,4] [0,7],[1,6] 6

Since HBO, Hkin, and Hrot are all diagonal in S, I , f , and
�, up to the current level of approximation these are all good
quantum numbers.Then a rovibronic eigenstate corresponding
to vibrational number v, in a single channel, can be designated
by |β,v,FMF 〉, where β represents [(SI )f,�] and as above F =
f + �. The corresponding eigenfunction would be written as a
sum over the |Ri〉 computational basis states: |β,v,FMF 〉 =∑

i |Ri〉〈Ri |β,v,FMF 〉. The β notation incorporates the effect
of nuclear spins into the notation used above, namely |η �,v〉,
where η = a(X) for S = 1(0). In the remainder of the paper, all
expressions for wave functions and matrix elements are written
in terms of the computational basis, which we sometimes write
in the unfactorized form |RiβvFMF 〉.

The precision of the data requires also a consideration
of mixing between these channels induced by the hyperfine
interactions and by second-order spin-orbit effects. These
effects are needed to explain small splittings between levels
with identical values of � and f , but different values of F .
These mixings are independent of MF , so we suppress this
quantum number through expressions in the rest of this section.

Singlet-triplet coupling by hfs effects can be derived by
transforming the hyperfine Hamiltonian from the case ef af b,f

atomic limit to the molecular regime, which we denote eSI,f

by contrast. (The eSI,f representation is identical with the bβ

case of [47].) The transformation between eSI,f and ef af b,f is
well known:

〈(Sa,Sb)S,(Ia,Ib)I,f |(Sa,Ia)fa,(Sb,Ib)fb,f 〉
= [(2fa + 1)(2fb + 1)(2S + 1)(2I + 1)]1/2

×
⎧⎨
⎩

Sa Ia fa

Sb Ib fb

S I f

⎫⎬
⎭ = T (eSI,f ,ef af b,f ), (11)

where the quantity in brackets is a 9J symbol. When rotation
is considered, the molecular case eSI,f basis set becomes
|[(S,I )f,�]FMF 〉, as stated above.
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FIG. 5. Energy levels calculated for the va = 37 band, from
(a) the uncoupled hfs expression [Eq. (10)], not including singlet
states; and (b) from calculations with the |[(S,I )f,�]FMF 〉 basis,
including singlet-triplet mixing (only even � values are shown). Solid
circles are calculated values, open circles denote experimental values,
and error bars denote the fraction of singlet character in (b), with the
maximum length corresponding to 100%.

The above transformation, applied to Hhf [Eq. (8)], yields
the form I · S given in Eq. (10) plus additional terms that couple
S = 0 and 1. In the computational basis, the matrix elements
of Hhf can be written

〈Riv|〈[(SI )f,�]F |Hhf (fa,fb)|[(S ′I ′)f ′,�′]〉|v′Rj 〉
=

∑
fa,fb

T (eSI,f ,ef af b,f )Hhf (fafb)T †(eS ′I ′,f ′ ; ef af b,f ′)

×δf,f ′δF,F ′δ�,�′δi,j δv,v′ = δf,f ′δF,F ′δ�,�′δi,j δv.v′

×
{

Aa

2
(I · S)δS,S ′δI,I ′ + (�S = ±1 terms)

}
. (12)

The �S = 0 terms are nonzero only for S = 1, and have I =
I ′. The �S = ±1 terms have I ′ = I ± 1. We have not been
able to obtain a simple analytic expression for the �S 	= 0
terms.

The second-order spin-orbit terms (HSO2) have the same
quantum number dependence [48] as spin-spin magnetic
dipole terms, which themselves can be estimated to be
negligibly small (<1 kHz) for the Cs2 a 3�+

u state. Of several
possible representations for the HSO2 terms, the simplest uses a
basis of values of the projection of the spin angular momentum
along the internuclear axis, n̂. We denote the projections along
n̂ of S,I, and F, by �,ι, and φ, respectively. We can then define
the representation aα with basis states |S,I,�,ι,p,F,φ〉, as in
Ref. [48], where p denotes the parity [p = (−1)� in the eSI,f

basis], and φ = � + ι is non-negative. In this aα basis, HSO2

FIG. 6. Energy levels calculated for � = 0–4 levels of the va = 38
band from fitted parameters, from (a) the uncoupled hfs expression
[Eq. (10)], without singlet states; and (b) from calculations with
the |[(S,I )f,�]FMF 〉 basis, including singlet-triplet mixing and
HSO2 terms. Small solid circles are calculated values, open circles
denote experimental values, and error bars denote the fraction singlet
character in (b). In (b), the nearby singlet state mixes slightly with
triplet state levels f = 0 and 6, especially.

is diagonal, depends only S and �, and has nonzero matrix
elements only for S = 1:

HSO2(R; S,�) = 2
3λSO2(R)[3�2 − S(S + 1)]. (13)

For λSO2(R) we have used a function of the form used in
Ref. [38]:

λSO2(R) = SSO2 10(−βSO2R). (14)

Note that often, as in Ref. [49], one writes λSO2 as a function
of v: λSO2(v) = (1/2)[E(3�+

1u,v) − E(3�+
0u,v)]. However, in

our multichannel DVR formulation, the R-dependent form is
more appropriate.

The transformation from the molecular case eSI,f basis to
the aα basis is given by a product of two Clebsch-Gordan
coefficients, as derived in Ref. [40]:

T (eSI,f ; aα) = 〈[(S,I )f,�]F |S,I,�,ι,p,F,φ〉
= (−1)�−F−φ[1 + (−1)�+p][2 − δ�0δι0]−1/2

×〈S,�,I,ι|f,φ〉〈f, −φ,F,φ|�0〉. (15)

We transform HSO2(R; S,�) from the aα representation to the
eSI,f representation to find matrix elements in the computa-
tional basis:

〈Riv|〈[(SI )f,�]F |HSO2(R,S,�)|[(S ′,I ′)f ′,�′]F ′〉|v′Rj 〉
=

∑
aα

T (eSI,f ; aα)HSO2(Ri ; S,�)T †(eS ′I ′,f ′ ; aα)

× δS,S ′δI,I ′δF,F ′δi,j δv,v′δv,v′ . (16)
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We can now calculate orthogonal transformations between
the three basis sets, ef af b,f , eSI,f , and aα , each with the same
number of basis states. For even � and F � f there are at
most 72 possible basis states, since � can range from F − f

to F + f . Each channel requires at least 350 mesh points in
R for the multichannel DVR eigenvalue calculations for the
data considered here. (A larger range of R is required for
the data of [18]). To reduce the scale of the calculation, we
acknowledge that the data come from only f = 8, 9, and
10, and states with � > 6 are very weakly coupled to levels
of interest. (There are near degeneracies between � = 4 and
� = 6 levels.) Thus, the calculation is restricted to 0 � � � 6.
This reduces the number of channels from 72 to 28 for F = 8,
and somewhat fewer for F = 10.

In the computational basis, neither the �S = ±1 terms
of Hhf , nor HSO2 (which mixes states of given � and f ),
are diagonal. Hence, eigenfunctions of the multichannel DVR
matrix for a given value of F,MF are R-dependent rovibronic
states of mixed βF ≡ |[(SI )f,�]F 〉 character. The final eigen-
states, while not vibrational levels of a single potential, can be
enumerated by index k and will be designated by |k,F,MF 〉.
(MF is omitted in what follows.) The eigenfunctions can
be written

∑
i,β |Riβ〉〈Riβ|kF 〉. Franck-Condon overlaps, for

example, are given by
∑

i,β〈k,F |Riβ〉〈Riβ|k′,F 〉. Note that
among those states observed in the experiments reported here,

intermixing of � and f values is typically less than a 10%
effect. The va = 37, F = 10(�,f ) = (4,7) and =(6,6) doublet,
which is nearly a 50-50 mixture of X and a state character,
represents an exceptional case.

V. RESULTS

One of our objectives is to observe levels of the Cs2 a 3�+
u

state moderately close to the dissociation limit and attempt to
detect the presence of nearby levels of the X 1�+

g state, so as to
lead to precise measurements of the relative binding energies.

A least-squares fitting process is used to optimize pa-
rameters to reproduce the experimental data. Table II lists
the measured binding energies (which have experimental
uncertainties of 0.34 to 0.42 GHz) and energy level differences
(experimental uncertainties of 30 MHz), and shows the quality
of the fit. The fitted parameters are the a state potential
parameters, De,Re, and the ai parameters, the SO2 parameters
SSO2 and βSO2, and also parameters that applied to both the X

and the a states, such as C6, C8, and the exchange parameters
Aexch,γexch, and βexch. The parameters accepted from other
sources and the fitted parameters are given in Tables III–V.
The calculated binding energies are within or nearly within
the quoted uncertainty of the experimental value. The fitted
energy differences with respect to the anchor levels exhibit

TABLE II. Observed and calculated binding energies, Eb, and difference energies, �E, in GHz. Binding energies (with experimental
uncertainties in the σ column) are given only for the (�,f )F = (0,8)8 “anchor levels” in each band. Observed difference energies between the
anchor levels and other (�,f )F levels are given in the next-to-last column, while difference between the observed and calculated �E values
are given in the last column. The experimental uncertainties for all of the �E values are 0.030 GHz. Levels of the degenerate, strongly mixed
pair of nominal [a 3�+

u ] (4,7) 10 and
[
X 1�+

g

]
(6,6) 10 states that are discussed in the text and depicted in Figs. 7(b) and 8 are denoted by ∗

[(4,7)10 is the major component in each case]. The calculated level positions for each state in this pair corresponds to the nearest level shown
in Fig. 7(b).

(0,8)8 anchor level Energy difference
binding energy, Eb from anchor level, �E

va Observed Observed-calculated σ (�,f )F Observed Observed-calculated

28 −1490.855 −0.25 0.39 (2,8)10 0.621 −0.020
29 −1354.275 0.19 0.34 (2,8)10 0.600 −0.025
30 −1224.670 0.13 0.42 (2,8)10 0.578 −0.030

(4,7)9 −6.975 0.096
(4,7)10 −7.000 −0.021
(4,7)8 −7.075 0.011
(2,7)9 −8.185 0.167

(4,6)10 −15.006 0.030

31 −1102.195 0.11 ′′ (2,8)10 0.564 −0.027
(4,7)9 −6.911 0.219

(4,6)10 −14.923 0.192

37 −515.405 0.24 ′′ (2,8)10 0.448 −0.035
(4,7)10∗ −7.446 0.012
(4,7)8 −7.528 −0.020
(4,7)9 −7.550 −0.062

(4,7)10∗ −7.625 0.073

(4,6)10 −15.731 0.109
38 −441.285 −0.29 ′′ (2,8)10 0.434 −0.029

(4,7)10 −7.469 0.053
(4,7)8 −7.508 0.080
(4,7)9 −7.538 0.042

(4,6)10 −15.549 0.110
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TABLE III. Summary of molecular constants for the Cs2 X 1�+
g

and a 3�+
u states. The hfs center of gravity, 0.344 96 cm−1 above the

fa + fb = 3 + 3 atomic limit, is taken as the dissociation limit in
our work.

De ωe Re

(cm−1) (cm−1) (Å)

X 1�+
g

Danzl et al. [22] 3650.0321(14)
Amiot, Dulieu [19] 3649.88(45) 42.021 303 4.645 160
Krauss, Stevens [50] 3573. 40.99 4.625

a 3�+
u

This work 279.23(4) 11.63 6.330(10)
Xie et al. [12] 279.35(5) 11.6336 6.2354(76)
Magnier, Li [11] 295 11.58 6.303
Aubert-Frécon [51] 255.6 6.36
Krauss,Stevens [50] 282 11.29 6.265
Foucrault et al. [52] 233 10.50 5.556
′′ 267 11.86 6.276

a root mean square (rms) residual of 90 MHz, and in some
cases are as large as 7 times the experimental uncertainty of
30 MHz, in defiance of repeated least-square fitting efforts.
By contrast, the rms residual for the I · S model is 180 MHz,
which is surprisingly good considering its simplicity.

Our experimental data yielded well-resolved rotational
and hfs. The rms shifts from the second-order spin-orbit
interaction (SO2) were 120 MHz, or somewhat larger than the
experimental resolution. We note that the data from [12] were
important because, although of relatively low resolution, they
establish the a state potential minimum. From the combined
fit, the rms residual for just the data of [12] was 0.34 cm−1, a
value that is comparable to the expected spread of hfs, which
was not resolved in those experiments.

The relative position of hyperfine levels calculated from
the simple form, Hhf = (Ahf/2)I · S, is identical for each
vibrational level. Figure 6 shows that for va = 38, the energy
levels differ only slightly from the (Ahf/2)I · S representation
even though there is a singlet state lying just above. On the
other hand, Fig. 5 for va = 37 shows substantial shifts in some
of the calculated energy levels, although the observed triplet
state levels (denoted by open circles) are perturbed to a smaller

TABLE IV. C6,C8, and exchange parameters used in the fit
to the data. All values are in atomic units, where for Cn, the
atomic unit is 1 EH an

0 , with EH = 4.359 744 2 × 10−18 J, and
a0 = 5.291 772 11 × 10−11 m. For Aexch, the atomic unit is EH a

−γexch
0 .

p.w. indicates present work. Numbers in brackets in the last two
columns indicate the decimal exponent.

C6 C8 Aexch

[53](1995) Theor. 6331 9.630[5]
[54](1999) Theor. 6851(54)
[16](2000) Expt. 6890(35) 9.546[5]
[19](2002) Expt. 6836(100) 9.63(19)[5] 1.10[ −3]
[18](2004) Expt. 6846.2(137) 9.63[5] 1.187(86)[ −3]
[17](2004) Expt. 6860(25) 8.60(75)[5]
p.w. 6816(34) 9.6302[5] 1.2286[ −3]

TABLE V. Other parameters used in the fit to the data. γexch and b

are dimensionless, βexch,C10, and C12 are in a.u., βSO2 is in Å−1, and
SSO2 as well as the ai are in cm−1. The parameters attributed to [38]
were obtained by a simulation of the results plotted in this work with
a simple function decaying exponentially with R.

Source

γexch 5.542 [19]
βexch 1.070 [19]
C10 1.35912[8] [53]
C12 2.901[10] [53]
SSO2 237.8 [38]
βSO2 0.4783 [38]
SSO2 660. p.w.
βSO2 0.4022 p.w.
b 0.100 p.w.
a2 6.294 210 272 7[3] p.w.
a3 −1.287 042 970 5[4] p.w.
a4 −2.850 901 344 5[4] p.w.
a5 −1.427 671 694 4[5] p.w.
a6 2.320 127 692 8[6] p.w.
a7 −4.414 361 644 6[6] p.w.
a8 −2.316 678 142 9[7] p.w.
a9 1.162 686 452 1[8] p.w.
a10 −1.900 603 685 8[8] p.w.
a11 1.102 236 471 5[8] p.w.

degree. In both figures, the length of the error bars denotes the
singlet fraction: the longest bars indicate essentially 100%
singlet character.

The variation of energy with F and the shifts due to
the SO2 term for the va = 37 band are displayed in more
detail in Fig. 7, vs � + f/10 + F/200. In this plot, the ×
symbols denote results with no SO2 (independent of F ), the
dots with SO2. Evidently, certain (�,f ) levels are affected
more than others, but in general the shifts due to SO2 are
much smaller than the hyperfine effects. The presence of a
singlet state in the experimental data is indicated primarily
by the va = 37,F = 10,(�,f ) = (4,7) doublet. Figure 7(b)
shows on a finer scale the energies for F = 8, 9, and 10, and
for (�,f ) = (4,7) and (6,6), which are superimposed in this
figure. By varying the potential parameters and the magnitude
of SSO2, we established that HSO2 couples (�,f )F = (4,7)10
and (6,6)10, by 40–80 MHz. Evidently, these two states share
enough (4,7)10 character to produce the doublet observed
experimentally, as discussed in Ref. [1]. In Table II, the residual
for the lower of the two nominally v = 37, (4,7)10 levels is
obtained from the energy for the calculated (6,6)10 level, in
accord with the level configuration indicated in Fig. 7(b).

Another perspective on the F = 10 doublet is provided by
Fig. 8, from Ref. [1]. This shows that for v = 37, a doublet
appears for σ− polarization, while for v = 38, there is a single
peak for this polarization. (The apparent doublet observed in
both bands for σ+ polarization comes from levels of different
F values.) The observed v = 37, F = 10 doublet splitting
is 179(20) MHz, and since the two peaks are of nearly equal
amplitude, one concludes that 179 MHz is very nearly twice the
effective coupling parameter between two nearly degenerate
levels. The splitting in the calculated values, shown in Fig. 7,
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FIG. 7. Energy levels calculated and observed for the v = 37
band. In (a), the × symbols denote energies calculated without
second-order spin-orbit effects, solid circles denote energies cal-
culated with them. In (b), we compare energies calculated for
(�,f ) = (4,7) (solid circles) and for (6,6) (pluses) in order to show
their near degeneracy. The experimental data for the nominally (4,7)
band are shown as open circles. The values calculated for (6,6) are
shifted along the x axis by 2.1 in order to superimpose them on the
(4,7) values. All data have been referenced to the v = 37 anchor level,
calculated or observed, respectively.

is only 122 MHz. To obtain a larger splitting required larger
values of λSO2 for v = 37, but larger values of λSO2 produced
deviations from other observed level differences in v = 30 and
31. The fit results shown in Tables II–V are thus a compromise
between even larger deviations in the binding energies for
v = 31 and larger deviations of the v = 37 F = 10 doublet
splitting. This same dilemma was obtained not only for the
piecewise potential using Eqs. (2) and (3), but also for the
MLR potentials which were based on an entirely different
representation. Evidently, our model is somehow deficient,
but we have not been able to identify the origin of the
problem.

Since energies calculated in the (�,f ) representation are
independent of F , the question arises why a doublet is not
observed for F = 8 and 9. Our analysis of the calculated
energy level structure indicates that for F = 8 and 9, the
mixing is somewhat less because the matrix element is slightly
smaller. The calculated (6,6) fraction decreases from about
0.40 in F = 10 to 0.15 in F = 9 and 0.07 in F = 8. These
numbers show the extreme sensitivity of this feature to the
molecular parameters and suggest that this observed doublet
rather precisely locates the v = 138 singlet vibrational level
relative to the triplet state v = 37 level. Figure 9(a) shows
that near degeneracies between singlet and triplet levels exist

FIG. 8. (Color online) This figure, from [1], shows parts of the
experimental data scans for v = 37 and 38. For v = 37, there is a
doublet for (f,�)F = (7,4)10 that is not present for v = 38. See text
for further discussion.

in v = 33, although there are no appreciable perturbative
interactions here.

We note also that the singlet-triplet wave function overlap
between nearly degenerate levels decreases as one moves
down in energy because the potentials diverge, as shown in
Fig. 4. That the singlet-triplet coupling is sensitive to the wave-
function overlap also enters significantly in model calculations
of the splittings of X state levels reported in Ref. [21]. The
splittings for � = 15 of vX = 137 that we calculate from
our parameters are only about 42% the experimental values
reported in Ref. [21], and we attribute this to slight deficiencies
of our potentials and the extreme sensitivity to wave function
overlaps.

It would have been desirable to include in the fit the
precision data from Ref. [18] for levels within 2.5 cm−1 of
the dissociation limit as well as Feshbach resonance data from
[13–15]. However, the additional number of mesh points in R,
as well as the large number of [(S,I )f,�]F channels coupled
by HSO2 made this impractical. Actually, the effect of HSO2 on
the data of [18] is quite small. If the HSO2 terms are dropped,
our methods with full rather than truncated wave functions in
R yielded a reasonable simulation of the data of [18], as shown
in Fig. 9(b). We note also that these data near the dissociation
limit are not so useful for making measurements sensitive to
me/mp: As described in Ref. [1], the sensitivity to changes in
me/mp decreases to zero near the dissociation limit.
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FIG. 9. Energy levels calculated with the |[(S,I )f,�]FMF 〉 basis,
for (a) the va = 31 band and (b) for data reported by [18], closer to the
dissociation limit. As above, error bars in (a) represent the fraction of
singlet character.

VI. IMPLICATIONS FOR MEASUREMENTS SENSITIVE
TO CHANGES IN me/m p

The data presented here and discussed in Ref. [1] exposed
one instance in which a small amount of singlet-triplet mixing
produces a state of nearly equal singlet-triplet character, hence
an unexpected doublet in the spectrum. This can be used to
determine the relative position of singlet and triplet levels.
Because the singlet potential is much deeper than the triplet
potential, measurements of the splitting between a pair of
X and a state levels that lie near to each other would be
sensitive to μ = me/mp, as discussed in Ref. [1]. Reference [1]
proposed some specific pairs of levels in Cs2 that appear
promising for such measurements. The level structure obtained
here from fits to the data suggests that there may be other
avenues to the same goal, depending on available experimental
techniques.

In Ref. [1], it was proposed to use microwave (MW)
spectroscopic techniques to measure the small splitting be-
tween such a pair of close-lying levels. Use of ultracold
molecules for such experiments would allow for the longest
possible observation time and hence best energy resolution.
We consider in particular an atomic fountain-type experiment,
where MW linewidths � ≈ 1 Hz are typical. To perform such
measurements, a superposition of the levels of interest must be
created; this in turn requires that three steps be experimentally
viable: (a) a method to initially populate one of the levels;
(b) a method to coherently couple them (i.e., drive transitions
between them with π/2 pulses); and (c) a method to selectively
detect one of them. In this section we discuss the viability of

these three steps for specific cases of nearly degenerate a and
X state levels in Cs2.

In the case of the alkali-metal dimers, and Cs2 in particular,
methods such as PA (e.g., [1,8]) and/or magnetoassociation
plus stimulated Raman transfer [10,55] have been shown
capable of producing a wide range of molecular bound states
in the ultracold regime. Hence, we assume that states of the
type produced in these experiments (primarily with low, even
values of �) can be produced at will. In addition, state-selective
detection with sufficient resolution has been demonstrated in
similar states of ultracold alkali-metal dimers, for example,
in Rb2 [10]. Hence, we also assume that detection can be
accomplished with standard methods.

We note one caveat to these assumptions: namely, that it is
highly advantageous to consider transitions between sublevels
that are insensitive to magnetic fields at first order, that is,
where both initial and final states have MF = 0. However, in
most experiments where ultracold molecules are formed, either
near-extreme MF sublevels are created (as in the experiments
reported here), or the distribution of MF populations is not
controlled (e.g., when molecules are formed by PA from an
unpolarized atomic sample). In the latter case, the MF = 0
level and �MF = 0 transition likely could be selected by the
high-resolution MW spectroscopy; however, this would come
at the expense of signal size since only a small fraction of
population would reside in the desired MF = 0 initial state.
We believe it is likely possible to selectively create molecules
in a MF = 0 state using coherent transfer methods, but to our
knowledge this has not yet been demonstrated experimentally.
While using states with MF 	= 0 is conceivable in principle, in
general, this would require stabilization of magnetic fields in
the experiment at a level that is technically very challenging.
For completeness, we consider both possibilities in the ensuing
discussion.

We next focus on step (b) above: the requirement to drive
transitions between pairs of close-lying levels in the a 3�+

u

and X 1�+
g states. We consider specifically the amplitudes for

driving direct, MW-frequency transitions between such pairs.
We note that both electric dipole (E1) and magnetic dipole
(M1) transitions between these levels are nominally forbidden:
For E1 transitions this is due to the change in S, while for M1
transitions this is due to the change u ↔ g. However, both
types of transitions are allowed due to mixings with other
levels, such that S and u or g are not exact quantum numbers
(see below).

Electric dipole transitions. We have used two different ap-
proaches to determine the E1 dipole moment. One is based on
a nonperturbative relativistic electronic-structure calculation
and a second relies on a perturbative evaluation based on
eigenfunctions of the nonrelativistic electronic Hamiltonian
and matrix elements of the spin-orbit interaction between the
X and a states and excited electronic states.

In order to determine the strength of the relativistic
transition dipole moment between the X 1�+

g (� = 0) and
a 3�+

u (� = 1) states nonperturbatively, we performed a fully
relativistic ab initio calculation using a restricted active
space configuration-interaction (RAS-CI) method [56,57] with
single, double, and triple excitations. The extended basis set,
constructed from Dirac-Fock and Sturm’s orbitals, include 5p6
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FIG. 10. The nonperturbative electronic transition dipole moment
between the relativistic X 1�+

0gand a 3�+
1u states of the Cs2 molecule

as a function of internuclear separation.

core, 6s, 6p valence, and 5d, 4f virtual excitations. We find
that a significant part of the binding energy of and the dipole
moment between these states is due to correlation effects
between core and valence electrons. These correlations have a
strong dependence on internuclear separation. Figure 10 shows
our transition dipole moment as a function of internuclear
separation R. The dipole moment is well represented by a sum
of two exponentials for R > 4.2 Å. That is,

d(R) =
∑
i=1,2

Aie
−κiR, (17)

with A1 = 0.17017 D and A2 = 41.273 D. (1 D = 3.3362 ×
10−30 C m). Moreover, κ1 = 0.313 48 Å−1 and κ2 =
1.818 65 Å−1.

We use the rovibrational wave functions ψη,v�(R) =
〈R|η,v�〉 of HBO,η + Hkin + Hrot, computed in the DVR and
the analytical representation of the dipole moment to find
the rotationally and vibrationally averaged dipole moment
dvv′ = 〈a,v�|d(R)|X,v′�′〉δ�,�′±1. Figure 11 gives a plot of dvv′

for the v = 37 and v = 38 vibrational levels of the � = 0 a 3�+
u
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FIG. 11. (Color online) The vibrationally averaged transition
dipole moment, |dv,v′ | for the vibrational levels v = 37 (black solid
curve) and 38 (red dashed curve) of the � = 0 a 3�+

u state as a
function of the vibrational level v′ of the �′ = 1 X 1�+

g potential.
We find transition dipole moments |d37,138| = 2.2 × 10−3 D and
|d38,139| = 2.0 × 10−3 D.

state as function of the vibrational levels of the �′ = 1X 1�+
g

state. Typically, the dipole moment is on the order of 10−3 D,
while for v′ > 140 it quickly approaches zero. Values for dvv′

for selected vv′, for which the binding energies of the X 1�+
g

and a 3�+
u levels are nearly degenerate, are given in the caption.

Perturbative results are smaller than those of the relativistic
calculation. This is consistent with findings on the size
of the second-order spin-orbit interaction HSO2. There the
perturbative results were also found to underestimate the
physical values [13,38,58].

To estimate angular factors for electric dipole transitions
between states that are primarily X 1�+

g and those that are
primarily a 3�+

u , we employ the result of the (less-exact)
perturbation approach which concludes that the leading term
that produces an allowed E1 transition between these states is
spin-orbit mixing between a 3�+

1u and a higher 1�u state. We
therefore assume a perturbative mixing ã 3�+

1u = αa 3�+
1u +

β 1�u, where |α|2 + |β|2 = 1. Thus, the “angular factor”
introduces a quantity proportional to β to multiply the dvv′

values obtained in the above discussion.
It will be simplest to evaluate the E1 transition in the

aα representation, using Eq. (15) to transform to eSI,f . To
summarize what follows, we can write

〈X 1�+
g |μE|ã 3�+

u 〉/E
= βT (X; aα(X))〈aα(X)|μ|aα(1�u)〉T (aα(1�u);1�u)†.

(18)

where the T elements indicate the T (eSI,f ; aα) transformations
as given in Eq. (15).

We consider only MF = 0 elements to avoid spurious
Zeeman shifts if the experimental magnetic field is not zero.
Matrix elements of μ in the aα representation follow from a
slight extension of Eq. (6.320) of [48] to obtain an expression
for �� = �� = 1 [here F is even, so (−1)2F = 1]:

〈aα(X)|μ|aα(1�u)〉 = 〈S = 0,I,� = 0,� = 0,ι,p,F,φ,

MF = 0|μ|S ′ = 0,I ′ = I,�′ = 0,� = 1,ι′ = ι,

p′ = −p,F ′φ′ = φ + 1,MF = 0〉 = dvv′

(
F 1 F ′
0 0 0

)

× (−1)φ
(

F 1 F ′
−φ −1 φ + 1

)
[(2F + 1)(2F ′ + 1)]1/2.

(19)

For transitions between MF = 0 sublevels, we have F =
F ′ ± 1. After applying T (eSI,f ; aα) from Eq. (15) to both sides,
the result, without the factor β, is a rough estimate of the
angular factors that multiply the dvv′ quantities obtained above.
Numerically, we find that the μ matrix element values are
no more than 0.5, while the transform elements are each no
more than 0.3. However, in view of the sum over ι(−I �
ι � I ), the net effect of the transform elements is of order
unity. Therefore, the angular factors reduce the effective dipole
transition strength by a factor of 2 to 3.

An E1 transition dipole moment of 1 × 10−3 D would
produce a transition rate of �E1 ≈ 3 ×103/s for a MW electric
field with amplitude of 1 V/cm. Since �E1 � � (where
� ∼ 2π × 1 Hz is the Ramsey linewidth in the fountain),
this would likely be adequate to measure the energy splitting
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between such pairs of states in an atomic fountain experiment
with a MW cavity.

Magnetic dipole transitions. Magnetic dipole transitions
are allowed between nominal a 3�+

u and X 1�+
g states, due

to Hhf-induced mixing of a components into the X states.
The M1 transition amplitude between these initial and final
states is determined by the perturbing Hamiltonian H ′

M1 =
−geμBS · B, where ge ≈ 2 is the electron g factor; μB is
the Bohr magneton; B is an oscillating magnetic field; and
we ignore much smaller contributions due to nuclear and
other magnetic moments. We consider the case of transitions
between specific eigenstates of the total Hamiltonian, initial
state |FMF ,k〉, and final state |F ′M ′

F ,k′〉, driven by a linearly
polarized B field B = Bẑ cos ωt .

In order to calculate the transition moment MM1 =
〈F ′M ′

F ,k′|HM1|FMF ,k〉/B, we use the expression for the
total wave function over the grid points Ri and channels, β:
|FMF ,k〉 = ∑

i,β |Ri〉|β〉〈Riβ|F,MF ,k〉, where β = (S,I )f �

as before. Then the transition amplitude in the rotating frame
is

〈F ′M ′
F ,k′|MM1|FMF ,k〉

= −geμB

2

∑
i,β ′,β

〈F ′,M ′
F ,k′|β ′Ri〉〈[(S ′,I ′)f ′,�′]F ′M ′

F |

× Sz|[(S,I )f,�]FMF 〉〈Riβ|F,MF k〉. (20)

The angular part of the matrix element can be evaluated
using standard transformations, taking into account that Sz

does not act on I or �, and that it has nonzero matrix elements
only when S = S ′ = 1. We find

〈[(S ′,I ′)f ′�′]F ′M ′
F |Sz|[(S,I )f,�]FMF 〉

= (−1)Q
√

6(2F + 1)(2F ′ + 1)(2f + 1)(2f ′ + 1)

×
{

f ′ F ′ �

F f 1

}{
S ′ f ′ I

f S 1

}

×
(

F ′ 1 F

−M ′
F 0 MF

)
δ�′�δI ′I δS ′SδS1, (21)

where Q = F ′ + F + f ′ + f + I + � + S ′ − M ′
F and the

√
6

arises from the reduced matrix element 〈S||S||S〉 for S = 1.
We note that, due to the 3j symbol in Eq. (21), MF = M ′

F

is required; moreover, when F ′ = F the matrix element
vanishes for MF = 0 and increases monotonically with |MF |.
Conversely, when F ′ = F ± 1 the matrix element decreases
monotonically with |MF |. Values of MM1 for a few specific
transitions of interest are given in Table VI. Note that the
transition amplitudes for a(v = 37) ↔ X(v = 138) are sys-
tematically smaller than those for a(v = 38) ↔ X(v = 130);
this is because the outer turning points for the X and a

state potentials diverge (and hence Franck-Condon overlaps
diminish) for the more deeply bound levels.

The last row for each set of the a(v) ↔ X(v′) transitions in
Table VI gives the sensitivity of the transition to variations of
the reduced mass, μ. This is labeled �W here, and corresponds
to differences in ∂μEν in Ref. [1]. It can be noted that in
this regime the more deeply bound level is more sensitive to
variations of μ.

The data in Table VI provide transition frequencies and
amplitudes as well as first-order magnetic sensitivities for a
representative subset of possible MW transitions in Cs2 that
are sensitive to possible variations in μ. There are several
examples of transitions with transition amplitude MM1 ≈
0.2 μB , such that a MW magnetic field with amplitude of
3 mG (corresponding to the same MW power needed for a
1 V/cm MW electric field, used earlier as a benchmark for E1
transitions) would drive transitions at a rate of ≈3 × 103/s. As
for the E1 transitions, this should be adequately large for use in
measuring energy splittings. These transitions have convenient
MW frequencies in the bands used for atomic clocks based on
Cs (9.2 GHz) or H (1.4 GHz).

Magnetically insensitive (MF = M ′
F = 0) transitions are

available if such states can be populated; we include g-factor
data to allow estimates of the size of static B field required to
resolve Zeeman sublevels in such experiments, as well as of
transition Zeeman shifts for other types of transitions should
these be needed. Magnetic gF factors are calculated from the
diagonal matrix elements of Sz, in a manner analogous to that
used for the M1 transition moments. Note that the difference
in fractional X-state character between the states is roughly
proportional to the sensitivity of that transition to μ; but for
all transitions considered, that difference is of order unity.

VII. SUMMARY AND CONCLUSION

In summary, we have reported experimental data on the
energies of several moderately bound states associated with
the a 3�+

u potential of Cs2. Using these data, together with
most other available information on the a and X 1�+

g states,
we have constructed a detailed model of the energy levels in
these coupled ground-state potentials. The model reproduced
and corroborated one case of significant singlet-triplet mixing
between near-degenerate levels of the X 1�+

g and a 3�+
u states.

This observation helps to locate the potentials of these two
states relative to each other. Having said this, we also want
to point out shortcomings of this work and opportunities for
further progress on these states of Cs2. Namely, (a) some
of the residuals in the fit to the data are significantly larger
than the estimated experimental errors; (b) data obtained
elsewhere [18] closer to the dissociation limit, as well as
Feshbach resonance data [13–15], were not included in the
fit; and (c) in contrast with the recent work on analogous states
of Rb2 [10] that used a different pathway for spectroscopy,
the experimental information on hfs and HSO2 interactions
extended only modestly below the dissociation limit.

Nevertheless, in view of its (limited) success, we have used
our model to calculate E1 and M1 transition matrix elements
between nearly degenerate pairs of levels, whose splitting is
sensitive to possible variations in the fundamental constant
μ. Based on the calculated values of the splittings and the
transition moments, we have suggested several specific pairs
of levels that appear suitable for experiments seeking evidence
for variation in μ, of the type proposed in Ref. [1]. These
calculations should be useful as a guide for designing new
experiments of this type and more generally in understanding
the structure of the Cs2 molecule.
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TABLE VI. Representative magnetic dipole transitions between a and X state levels with � = 4, driven by a linearly polarized MW
magnetic field along z. Results for a(v = 38) ↔ X(v = 139) and also for a(v = 37) ↔ X(v = 138) are given. The top three lines specify the
MF values and the X state quantum numbers FX and fX , which are the same for both values of MF . FX,fX,EX,gFX

or Fa,fa,Ea,gFa
refer to

levels that are primarily X 1�+
g or a3�+

u , respectively. Energies (EX or Ea) (in GHz) are relative to the anchor level, (f,�)F = (8,0)8, which is
at Eb = −441.55 GHz for a(v = 38) and at −515.14 GHz for a(v = 37). %X (%a) gives the percent X (a) character. In each column, data
on the most intense transition from the X level to a mostly a state level are given. The transition amplitude MM1 from Eq. (20) is given in units
of μB . �E is the MW transition frequency in GHz. �W (in cm−1) is the difference of the energy sensitivity of W to μ, for the two states of
the transition, where W = μ∂E/∂μ is the absolute change of E with respect to a fractional change �μ/μ in μ (see Ref. [1]).

MF 10 0 9 0 8 0
FX 10 10 9 9 8 8
fX 6 6 6 6 6 6

a(v = 38) ↔ X(v = 139)

EX 2.67 2.70 2.72
%X 72 71 74
gFX

0.07 0.08 0.08
Fa 10 9 9 8 8 9
fa 6 5 6 5 6 6
Ea −1.78 −7.38 −1.71 −7.54 −1.69 −1.71
%a 73 100 73 100 72 73
gFa

0.20 0.06 0.19 0.06 0.22 0.19
MM1 0.45 0.17 −0.21 0.17 −0.16 −0.05
�E 4.44 10.04 4.41 10.24 4.40 4.43
�W 65 101 63 101 64 102

a(v = 37) ↔ X(v = 138)

EX −9.81 −9.80 −9.80
%X 89 89 89
gFX

−5 × 10−3 −7 × 10−3 −6 × 10−3

Fa 10 9 9 10 8 9
fa 6 5 6 7 6 7
Ea −15.86 −7.24 −15.80 −7.45 −15.77 −7.51
%a 94 78 93 99 93 99
gFa

−0.23 0.03 −0.24 0.04 −0.24 0.05
MM1 0.11 −0.06 0.11 −0.09 −0.10 0.09
�E 6.05 −2.57 6.00 −2.36 5.97 −2.29
�W 132 127 132 130 137 112

More generally, we reiterate the conclusions of [1]; namely,
it appears feasible to construct an atomic fountain-type
experiment based on Cs2 to search for varations of μ with
unprecedented sensitivity. As argued in Ref. [1], an experiment
of this type using carefully chosen molecular transitions in Cs2

(such as those discussed here) could conceivably be used to
search for fractional variations in μ at the level of ≈1 part in
1017/yr. We note as well that it was recently pointed out [59]
that the same molecular transitions are also highly sensitive
to possible variations in the fine structure constant α. The
discussion of this paper has been couched in terms of a search
for variation in μ, but is equally applicable to both cases.
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