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Abstract
This paper reviews current experimental and theoretical progress in the study of dipolar
quantum gases of ground and meta-stable atoms with a large magnetic moment. We
emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating
resonant molecular states in ultracold s-wave collisions between magnetic atoms in external
magnetic fields. The dramatic differences in the distribution of resonances of magnetic 7S3

chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron
angular momentum is analyzed. We focus on dysprosium and erbium as important
experimental advances have been recently made to cool and create quantum-degenerate gases
for these atoms. Finally, we describe progress in locating resonances in collisions of
meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay
between collisional anisotropies and spin–orbit coupling exists.

Keywords: ultracold collisions, magnetic atoms, Feshbach resonances, quantum gasses,
dipole–dipole interactions, anisotropic interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

Breakthroughs in the experimental realization of ultracold
dipolar quantum gases of atoms with a large magnetic moment,
such as Cr [1], Dy [2, 3] and Er [4, 5], have opened a new
scientific playground for the study of strongly correlated
atomic systems. These breakthroughs are not only limited
to ground-state atoms, but apply also to meta-stable P-state
systems, where the non-zero orbital angular momentum
contributes to a substantial magnetic moment [6, 7]. This new
research area is enabled by the long-range and anisotropic
nature of the magnetic dipole–dipole interactions between
magnetic atoms that allow one to engineer exotic many-
body phases with control and tunability [8, 9]. Due to their
large spin, dipolar gases of magnetic atoms represent an
excellent environment for exploring the interface between
condensed matter and atomic physics, as recently illustrated
by [10], where a complex spin dynamics is observed for doubly
occupied sites of an optical lattice containing Cr atoms. In

addition, ultracold samples of magnetic atoms are proposed
for precision measurements of parity nonconservation and
variation of fundamental constants [11, 12], as well as quantum
information processing [13]. For example, robust quantum
memory can be created with highly magnetic atoms coupled
to a super-conducting stripline [14].

1.1. Characterization of Feshbach resonance

In this review we will explore the concept of controlling
the interactions between ultracold magnetic atoms with
magnetic Feshbach resonances. The limit of infinitely
strong interactions between atoms leads to strongly interacting
quantum gases. Alternatively, interactions can be turned to
zero to create an ideal Fermi or Bose gas.

Figure 1(a) illustrates the physics of a Feshbach resonance
based on a schematic picture of the interaction potentials
between two atoms. Typically, in ultracold-atom experiments
a homogeneous magnetic field B is present and all atoms are
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Figure 1. (a) Schematic of interatomic potentials of magnetic
atoms. Scattering starts in the entrance and open s-wave channel. A
Feshbach resonance is due to a bound state |v〉 of a potential of a
closed channel with a dissociation energy above that of the open
channel. Here, the splitting, EZeeman, is due to the Zeeman
interaction and can be varied with a magnetic field. The vibrational
level |v′〉 of a second closed channel is a stable and weakly bound
molecular level and can become a resonance when EZeeman is further
increased. (b) shows the scattering length as a function of collision
energy. A resonance with a distinctive Fano profile [15] occurs near
energy Eres.

prepared in its energetically lowest Zeeman sublevel. Two such
atoms form the entrance or open channel. Closed channels
correspond to pairs of atoms in energetically higher Zeeman
states. By changing the magnetic field strength the closed
channel energy shifts with respect to open channel energy.

In the course of the collision the open and closed channels
couple and a magnetic Feshbach resonance appears, when a
bound state of a closed channel has an energy near the collision
energy of the open channel. The bound state is resonantly
coupled to the continuum. As we will discuss below in more
detail for collisions of magnetic atoms, coupling between
open and closed channels can only occur due to anisotropic
molecular interactions whose strengths depend on the direction
along which the atoms approach each other. Then for an
entrance channel with no relative orbital angular momentum
�, an s-wave channel, coupling occurs only to closed channels
with non-zero partial wave. As shown in figure 1(a) a non-
zero partial wave leads to a centrifugal barrier for the closed
channel potentials.

Figure 1(b) shows the scattering length, a, as a function
of collision energy E in the presence of a Feshbach resonance
with resonance energy Eres. The (s-wave) scattering length
is a convenient measure of the strength of the atom–atom
interactions at small collision energies. In the limit of zero
collision energy the total elastic cross-section σ = 4πa2.
Quantum mechanics allows a to be either positive or negative.
Moreover, the scattering length can depend on collision energy
as shown in figure 1(b) by a distinctive Fano profile for
E ≈ Eres. Away from the resonance the scattering length
approaches a background value.

Figure 2 gives a second view of the magnetic Feshbach
resonance. In this figure the scattering length is shown as
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Figure 2. Example of a scattering length at zero collision energy as
a function of magnetic field. The figure shows two resonances, one
broader than the other, over a small magnetic field region (in
arb. units). The scattering length is scaled in units of the positive
background value, abg, away from both resonances.

a function of magnetic field for zero collision energy. A
resonance occurs whenever the scattering length or effective
size of the atom goes through infinity. The analytic form for
an individual resonance at zero collision energy was derived
in [16] and given by

a(B) = abg

(
1 − �

B − Bres

)
,

where abg is the background scattering length, Bres is the
magnetic field position of the resonance, and � is the magnetic
width. In fact, it can also be shown that over a sufficiently small
magnetic field range Eres(B) = µres(B − Bres), where µres is
the magnetic moment difference of the resonant bound state
and the open channel.

1.2. Role of Feshbach resonances in ultracold collisions

The crucial role that magnetic Feshbach resonances play can be
understood from typical densities and temperatures of dilute
quantum gases in weak (harmonic) dipole traps created by
focused laser beams. The density for the dilute ultracold gas
of atoms varies from n = 1012 to 1015 atoms cm−3, which
gives a mean interparticle separation of around 100 nm. The
temperatures are within 1 nK to 1 µK corresponding to de
Broglie wavelengths �dB of order of the mean separation. At
phase space densities n�3

dB of order one a gas of bosonic atoms
forms a Bose–Einstein condensate (BEC). At the same time the
background s-wave scattering length is of order 5 nm, much
smaller than the average separation between the atoms. It can
be tuned via magnetic Feshbach resonances, to much larger
values leading to strongly interacting quantum gases.

It is also worth noting that typical Zeeman energies,
EZeeman, are of order kB ×100 µK for a magnetic field strength
of order 1 G. Here kB is the Boltzmann constant. Only for
much weaker magnetic fields is the Zeeman energy of the
order of typical temperatures. Magnetic fields of order 103 G
are routinely created. The same analysis shows that for a 1 G
change in the magnetic field the resonance energy Eres(B) can
change by kB × 100 µK.
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Feshbach resonances play a much larger role than just
being able to enhance the interaction strength. They are also
used to create a BEC of weakly bound molecules [17]. One
such bound state is shown as level |v′〉 in figure 1. This bound
state can be further stabilized by conversion to a deeply bound
molecule by two- or more-photon Raman transitions [18, 19].
Finally, three-body Efimov physics [20] can be explored.

1.3. Short history

The first theoretical prediction of Feshbach resonances in
collisions of ultracold cesium atoms was published by
Tiesinga et al in 1993 [21], while the first observation of a
Feshbach resonance in ultracold collisions of sodium atoms
was published by Ketterle’s group in 1997 [22]. The impact
of Feshbach resonances in quantum degenerate alkali-metal
gases has been broadly discussed over the past two decades.
Theoretical concepts of the production of cold molecules via
magnetically tunable Feshbach resonances were presented
in [17]. It was followed by an extensive review [23] that
focused on Feshbach resonances as the essential tool to control
the interactions between ultracold alkali-metal atoms. This
included a discussion of a numerous experimental methods to
detect resonances as well as a discussion of their applications.
Reference [23] also provided a description of the early history
behind the phenomenon of resonant coupling between a bound
state and a continuum and the observation of asymmetric Fano
profiles [15] due to quantum interference in photo-ionization
and absorption spectra. An excellent review on recent
advances on Bose-condensed quantum gasses of ultracold
dipolar atoms and molecules can be found in [24].

1.4. Anisotropic nature of Feshbach resonances

In this review we explore the anisotropic nature of Feshbach
resonances in the collision between ultracold highly magnetic
atoms. Highly magnetic atoms are atoms with an electronic
ground state which has a large total angular momentum � and
thus a large magnetic moment gµBj , where g is the atomic g

factor and µB the Bohr magneton. Examples of such atoms
are chromium and the lanthanides erbium and dysprosium with
an angular momentum j = 3, 6, and 8, respectively. In
addition, we will describe recent efforts to observe anisotropic
resonances in collision of meta-stable atoms with non-zero
electronic orbital angular momentum L. We will contrast
such resonances with those observed in alkali-metal atom
collisions, where the broadest (strongest) Feshbach resonances
are hyperfine induced and the resonant bound states do not
rotate.

Atoms have a large magnetic moment when several of
the electrons in open electron shells are aligned, either via
their spin or their orbital angular momentum. In chromium
the magnetic moment is solely due to the alignment of the
spin of the six electrons in the open 3d5 and 4s shells. Their
total orbital electron wavefunction is spherical (an S state).
The most intriguing magnetic atoms are the submerged-shell
lanthanide atoms. They have an electronic configuration with
an open inner 4f shell shielded by a closed outer 6s2 shell. Their
magnetic moment is also due to alignment of electron orbital

angular momenta so that the orbital electron wavefunction
becomes non-spherical.

Interactions between magnetic atoms are orientation
dependent or anisotropic. At room temperature anisotropic
interactions are much smaller than kinetic energies and other
major interactions between the atoms and, therefore, can
be ignored. The situation is different for an ultracold
gas. Reference [25], for example, demonstrated that the
anisotropy due to the magnetic dipole–dipole interaction
between ultracold chromium atoms leads to an anisotropic
deformation of a Bose condensate. Furthermore, there is
a strong evidence that anisotropy plays a dominant role in
collisional relaxation of ultracold atoms with large magnetic
moments [26–32].

The density of Feshbach resonances as a function of
magnetic field is for some highly magnetic atomic species so
high that statistical interpretations of the resonance spectrum
become necessary. Originally, such statistical theories
described level distribution in nuclear physics [33, 34], or
Rydberg levels in spatial-dependent magnetic fields [35].

The remaining part of this review is set up as follows.
In section 2 we start by describing the long-range interatomic
interactions that control the origin of the Feshbach resonances.
We focus in particular on the interplay between the isotropic
and anisotropic interactions. In section 3 we describe the role
of anisotropic dipolar interactions on Feshbach resonances in
the collisions of atomic chromium. We also describe some
of the applications of resonances in the context of many-body
physics. Feshbach resonances in magnetic lanthanide-atom
collisions are non-perturbative in the anisotropic interactions
and will be discussed in section 4 for dysprosium and
erbium. For erbium resonances the connection to statistical
interpretations of resonance locations will be established as
well. Resonances in collisions between atoms in meta-stable
states will be discussed in section 5. We conclude in section 6.

2. Basic physics of atomic interactions

2.1. Isotropic interactions

Most current ultracold-atom experiments use alkali-metal atom
gases, which have only one open valence electron shell. In fact,
this shell is an s orbital containing one electron. The bond
between atoms with such valence configuration is isotropic.
Additionally, for internuclear separations R, where the atomic
electron clouds do not significantly overlap, this bond is
characterized by the isotropic van der Waals interaction

V ( �R) → C iso
6

R6
for R → ∞,

whereC iso
6 is the isotropic van der Waals coefficient. Moreover,

it was quickly realized that as this interaction energy decays
relatively fast with R the complete potential, both short and
long-range, for many purposes, such as the modeling of
quantum degenerate gases, can be replaced by a contact delta-
function interaction

Vdelta( �R) = g0 δ( �R)
∂

∂R
R,

3
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Figure 3. (a) A schematic of the angular momenta to describe the
collision between bosonic magnetic atoms. (b) The Zeeman energy
of the magnetic sublevels of a spin-3 magnetic atom as a function of
field strength.

with strength g0. This interaction again does not depend on the
angle of approach and is thus isotropic. Its strength is chosen
in such a way that both potentials, V ( �R) and Vdelta( �R), have
the same scattering phase shift η(k) → −ask for ultracold
collision energies E, where as is the s-wave scattering length
and wave number k is defined by E = h̄2k2/(2µr). This then
leads to g0 = (2πh̄2/µr) × as and µr is the reduced mass of
the atom pair.

2.2. Anisotropic interaction

In contrast, interactions between atoms with a large permanent
magnetic dipole moment are controlled by anisotropic forces.
This anisotropy is present at both short and long-range
interatomic separations, but is most easily explained for large
separations in terms of the three contributing forces. They are
the magnetic dipole–dipole Vµµ( �R), van der Waals dispersion
VvdW( �R), and quadrupole–quadrupole VQQ( �R) interaction
potentials, respectively. (For details on the short-range
potentials see [36].)

The natural starting point for a collision of bosonic
magnetic atoms in a magnetic field are the orthonormal basis
states |j1m1〉|j2m2〉Y�m(θ, φ), where the kets |jimi〉 are the
electronic wavefunctions of atom i = 1, 2 with total atomic
angular momentum �i and projection mi along the direction
of the magnetic field. The spherical harmonics Y�m(θ, φ)

describe the rotational wavefunction of the two atoms, where
the angles θ and φ orient the internuclear axis relative to the
magnetic field direction and �� is the relative orbital angular
momentum (also known as the partial wave). Note that when
both bosonic atoms are prepared in the same spin state, only
channels with even values of � are allowed. Figure 3 shows
a schematic picture of these angular momenta as well as
the linear-dependence of the Zeeman energy of the atomic
sublevels in a magnetic field.

2.3. Theoretical background for interactions between
magnetic atoms

The three long-range interactions can be systematically
represented in terms of tensor operators that describe the
coupling between the three angular momenta �1, �2, and ��.

Following [36] we have

Vµµ( �R) = cµµ

R3

∑
q

(−1)qC2,−q(θ, φ)T
(2)

2q , (1)

VvdW( �R) = −
∑

k=0,2,4;i

c
(i)
k

R6

∑
q

(−1)qCk,−q(θ, φ)T
(i)
kq , (2)

and
VQQ( �R) = cQQ

R5

∑
q

(−1)qC4,−q(θ, φ)T
(1)

4q , (3)

where operators Ckq(θ, φ) = √
4π/(2k + 1)Ykq(θ, φ) mix

different partial waves �. (Examples of this function are
C00(θ, φ) = 1 and C20(θ, φ) = (3 cos2 θ − 1)/2.) The
spherical tensor operators T

(i)
kq of rank k and component q

describe couplings between the atomic angular momenta �1

and �2 and are given by

T
(1)

00 = I, T
(2)

00 = [j1 ⊗ j2]00, T
(2)

2q = [j1 ⊗ j2]2q, (4)

and
T

(1)
2q = [j1 ⊗ j1]2q + [j2 ⊗ j2]2q, (5)

T
(1)

4q = [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]4q ,

T
(3)

2q = [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]2q ,

T
(3)

00 = [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]00 ,

where I is the identity operator and [j1 ⊗ j2]kq denotes a
tensor product of angular momentum operators �1 and �2 of
atoms 1 and 2 coupled to an operator of rank k and component
q [37]. The higher-order tensor operators are constructed in
an analogous manner. The coefficients cµµ, cQQ, and c

(i)
k are

the strengths of the individual terms.
Many of the tensor operators in equations (1)–(3) have

a straight forward interpretation. Firstly, a contribution is
anisotropic when it contains a Ckq(θ, φ) with non-zero rank k.
Moreover, to first-order perturbation theory in the interactions,
the projections m1, m2, and m and partial wave � can change
up to 2 units due to the magnetic dipole interaction and up to
4 units due to the quadrupole–quadrupole interaction and the
anisotropic dispersion potential [37].

The van der Waals dispersion interaction in equation (2)
contains multiple contributions. The largest by far is
the isotropic and spin-independent term proportional to the
identity operator. The term with T

(2)
00 or equivalently

proportional to �1 · �2 induces spin–spin coupling without
affecting the relative orbital angular momentum. The
dispersion term proportional to T

(2)
2q in equation (4) can be

recognized as describing the same coupling between angular
momenta as the magnetic dipole–dipole interaction. The van
der Waals contribution, however, decays as ∝ 1/R6.

Equation (5) defines four more tensors T
(i)
kq . Each is

connected to a term of the dispersion potential and is extremely
relevant for the interactions between the Dy and Er lanthanide
atoms. In fact, [36] showed that, after the term proportional
to the spin-independent T

(2)
00 , the largest dispersion term is the

one proportional to T
(1)

2q . It corresponds to coupling of the
quadrupole moment operator [ji⊗ji]2q of atom i to the rotation

4
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Figure 4. From left to right the gerade adiabatic C3, C6 and C5 coefficients in atomic units for the interaction between two ground state
3Hj=6 Er atoms as a function of the projection � of the total angular momentum �J on the interatomic axis. For each � there are
approximately (12 − |�|)/2 gerade adiabatic coefficients. Since interactions between atoms are orientation dependent, the arrows on the
graph symbolize the anisotropy of the interactions.

of the molecule. For atomic chromium with its spherical
electron wavefunction anisotropic dispersion and quadrupole–
quadrupole interactions are zero leaving only the magnetic
dipole–dipole interaction as an anisotropic interaction.

This description of collisions and interactions between
magnetic atoms in terms of tensor operators should be
compared to that of collisions between alkali-metal atoms
[17]. Alkali-metal atoms have a non-zero nuclear spin �ı and,
in addition to the Zeeman interaction, an atomic hyperfine
coupling between electron and nuclear spin ∝ ( � · �ı) must
be included. On the other hand, as remarked upon at
the beginning of this section, the bond is isotropic with a
van der Waals potential that is fully given by the simplest
tensor −c

(1)
0 C00(θ, φ)T

(1)
00 /R6 = −c

(1)
0 /R6. The short-range

potentials can be succinctly described by Vexch(R)( �1 · �2),
where Vexch(R) is the so-called exchange potential, which is an
exponentially decaying function of R. The alkali-metal atoms
do have a magnetic moment, but their magnetic dipole–dipole
interaction is weak.

2.4. Relative size of anisotropic interactions

An elegant means to represent the character of the anisotropy
of the magnetic dipole–dipole, dispersion, and quadrupole–
quadrupole interactions is to diagonalize each of equations (1),
(2), and (3) in the coupled molecular basis |(j1, j2)J�〉 with
projection � of �J = �1 + �2 along the internuclear axis. This
omits couplings between different projections � due to the
rotation of molecule. Figure 4 shows the resulting eigenvalues
(multiplied by Rn with n = 3, 5, or 6, respectively) or adiabatic
coefficients as a function of � for two erbium atoms, based
on values for cµµ, c

(i)
k , and cQQ from [38]. (The authors

used experimental data on atomic transition frequencies and
oscillator strengths [39, 40] and an Er quadrupole moment of
0.029 a.u.)

Figure 4 shows that the adiabatic coefficients of the three
types of interactions have a unique dependence with �. The
values for the dipole–dipole and quadrupole–quadrupole inter-
action are both positive or negative reflecting the repulsive or
attractive nature of these interactions depending on the direc-
tion at which atoms approach each other. The adiabatic van

50 100 150 200
R (a.u.)

10
-12
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-10

10
-8

10
-6

V
 (

a.
u.

)

C3/R
3

C5/R
5

C6/R
6

∆C6/R
6

Zeeman splitting
             at 100 G

at 1 G

Figure 5. Typical long-range interaction potentials and Zeeman
level splittings for Er+Er as a function of interatomic separation in
atomic units. We have used an isotropic C6 = 1723 a.u. and a
‘mean’ anisotropic �C6 = 350 a.u. based on figure 4.

der Waals coefficients C6 are always positive corresponding to
predominantly attractive Born–Oppenheimer potentials where
a larger C6 value implies a deeper potential. Moreover, they
show a smooth nearly parabolic dependence on �, indicating
that one of the rank k = 2 contributions to the van der Waals
potential is the largest anisotropic contribution. A rank k = 4
contribution will lead to a quartic dependence with �.

To analyze the interplay between different long-range
forces in collisions of Er atoms, figure 5 shows the
strength of isotropic and various anisotropic potentials as
a function of R. In our basis |j1m1〉|j2m2〉Y�m(θ, φ)

the Zeeman interaction as well as the isotropic dispersion
potential (labeled C6/R

6) only shifts molecular levels and
cannot cause inelastic transitions. The magnetic dipole–
dipole interaction (C3/R

3), the anisotropic component of
the dispersion potential (�C6/R

6), and the negligibly small
quadrupole–quadrupole interaction (C5/R

5) lead to coupling
between Zeeman sublevels.

For different interatomic separations different interactions
dominate. At large R the Zeeman splitting is largest. When
the curves for the magnetic dipole or anisotropic dispersion

5
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data. Dashed and solid lines correspond to a theoretical model of
the expansion without and with the inclusion of the dipole–dipole
interaction, respectively. Reproduced with permission from [25].
© 2005 The American Physical Society.

interaction cross the Zeeman energies m-changing collisions
or relaxation can occur. For small magnetic fields the crossings
occur at large interatomic separations. We also note that for
R > 60a0 the transitions due to the magnetic dipole–dipole
interaction dominate over those of the anisotropic van der
Waals interaction.

3. Feshbach tuning in collisions of atomic
chromium

Over the past ten years experimental advances have led to better
control of degenerate gases of magnetic 52Cr atoms in the 7S3

ground state. A large magnetic moment of 6µB initiates a very
strong anisotropic dipolar interaction that is 36 times stronger
than that between alkali-metal atoms. Developments started
at the University of Stuttgart in the group of Pfau when a
BEC of Cr atoms was reported in 2005 [1]. Reference [25]
demonstrated, as shown in figure 6, that by changing the
direction of the magnetic field relative to the orientation of a
cigar-shaped condensate, dipolar interactions modify the free
expansion.

The first observation of Feshbach resonances in the
collisions of ultracold bosonic 52Cr atoms in the mj = −3
state was reported in [41]. They found ten resonances,
shown in figure 7, between B = 4 G and 600 G, leading
to an average density of resonances of ≈0.02 per Gauss.
The zero nuclear spin of 52Cr and, thus, the absence of a
hyperfine Fermi-contact interaction allowed for an accurate
model and identification of the observed resonances using
multichannel scattering calculations. In fact, the average
discrepancy between theoretical and experimental resonance
positions is only 0.6 G. The dipole–dipole interaction was
included in the theoretical modeling of [41] allowing an

accurate description of the widths of the observed resonances.
A similar theoretical analysis of the Feshbach resonances
observed and characterized in [41] was performed in [42].

3.1. Direct evidence for dipolar effects

Later it was shown that the effects of dipolar forces in
a quantum gas of Cr can be brought out using Feshbach
resonances [43]. The broadest resonances in figure 7, at
B = 589 G, were selected for Feshbach tuning of the s-
wave scattering length. With the scattering length set close
to zero, direct evidence for dipolar effects on BEC was
observed [44, 45]. It was shown that the magnetic dipole–
dipole interaction energy can be comparable to the so-called
mean-field energy. Figure 8 shows their observation of the
scattering length as a function of the magnetic field near the
589 G Feshbach resonance. A characteristic anisotropic d-
wave collapse and subsequent explosion, presented in [46],
gave further evidence of the relevance of dipole–dipole forces.

Dipolar interactions have other consequences as well. A
chromium sample prepared in the low-field seeking mj = +3
state will undergo strong dipolar relaxation, where, during a
collision, one or both atoms change state to a sublevel with
a smaller mj . The decrease in internal energy leads to an
increased relative kinetic energy and the atoms are, typically,
lost from the shallow traps in which they are held. This
relaxation was observed as early as 2003 [29]. It was shown
that the cross-section for relaxation scales as the cube of the
magnetic dipole moment. Additional dipolar relaxation rates
were measured in [47–49]. Furthermore, they showed that
relaxation can be controlled by static and oscillatory magnetic
fields.

Chromium atoms have also been loaded into optical
lattices, periodic potential created counter-propagating laser
beams. Reference [50] showed that for a one-dimensional
optical lattice the stability of a pan cake-shaped dipolar
52Cr condensate near B = 589 G dramatically depends on
the depth of the lattice. The stability measurements were
performed at a magnetic field near a Feshbach resonance,
where the dipole–dipole interaction dominates the short-range
isotropic interactions. Another effect of a strong dipole–dipole
interaction is that a gas can be stable in an optical lattice, but
is not during a time-of-flight expansion after the lattice trap
is turned off [51]. Non-equilibrium quantum magnetism at
very small magnetic field strengths was studied by experiments
in [10]. They showed that non-equilibrium spinor dynamics is
modified by the non-local inter-site dipole–dipole interactions.

3.2. Cooling effect of dipolar relaxation

More recently, dipolar relaxation was used to cool a sample
by adiabatic demagnetization. This cooling scheme was
suggested in [52] and demonstrated experimentally in [53].
Figure 9 shows how inelastic collisions can be used to
implement adiabatic demagnetization. The scheme relies
on collisional relaxation in extremely small magnetic fields,
where Zeeman splittings are of the order of the temperature of
the gas, and on spin selection rules that can only be achieved by
anisotropic interactions, where the atomic angular momentum
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couples to the rotational state of the colliding atoms. Recent
research [54] in demagnetization cooling of Cr atoms showed a
significant improvement in efficiency over a large temperature
range and for high atomic densities. The authors discuss
the possibility of achieving Bose–Einstein condensation by
demagnetization cooling of Dy atoms.

The role of the dipole–dipole interaction in spinor
dynamics, the time evolution coherences between and
populations of mj sublevels, in a chromium BEC was explored
in [55, 56]. The dynamics resembles the Einstein–de Haas
effect. Anisotropic coupling transfers atoms from sublevel
mj to mj + 1 leading to the generation of dynamical rotation.
Reference [57] showed that the Einstein–de Haas effect is
easily destroyed due to the role of Larmor precession in an
external magnetic field.

(a) (b) (c)

Figure 9. Principle of demagnetization cooling. (a) In a magnetic
field where the Zeeman splitting �E between adjacent Zeeman
sublevels mj is larger than the thermal energy kBT , a gas of
magnetic atoms in the energetically lowest mj = −j state is stable.
There are no inelastic dipolar relaxation processes. (b) By slowly
reducing the field strength so that �E ≈ kBT , the dipole–dipole
induced transitions to state mj = −j + 1 become allowed and
kinetic energy is converted into Zeeman energy. (c) By applying
an optical pumping pulse of σ− polarized light, the cloud can again
be polarized but now is at a reduced temperature. The excess
Zeeman energy is taken away by the spontaneously emitted photons.
The lowest achievable temperature is of the order of the photon
recoil energy, the energy added by the optical pumping process.
Reproduced with permission from [24]. © 2009 IOP Publishing
Ltd.

In summary, the most important feature of a Cr quantum
gas is a strong anisotropic dipole–dipole interaction, based on
the large magnetic moment (electronic spin) of the Cr atom.
These interactions lie at the heart of many fascinating effects
observed or predicted for a Cr BEC.

4. Degenerate gases of dysprosium and erbium
atoms

4.1. Collisional properties of submerged-shell atoms

Over the past decade significant attention has been
devoted to the characterization of the interactions between
submerged-shell 3d-transition-metal and 4f-rare-earth atoms
[25, 28–30, 44, 58–60]. These atoms have an electronic
configuration with an electron vacancy in the inner shell
shielded by a closed outer shell. It was long assumed that
inelastic, energy-releasing collisions of submerged-shell atoms
are substantially suppressed due to shielding caused by the
closed outer-shell electrons. This effect was first predicted and
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demonstrated for collisions between submerged-shell atoms
with helium [30, 58, 59, 61]. The suppression of inelastic
loss with a cold gas of He atoms allowed for sympathetic
cooling of submerged-shell atoms to millikelvin temperatures.
Theoretical analyses by [62] of experimental measurements
[30] explain this low rate by the fact that anisotropy in
interactions between open-shell lanthanide atoms and helium
is extremely small.

Measurements [27, 28, 31, 60] of the spin relaxation rates
in collisions of two submerged-shell atoms, however, have
shown no such suppression and, in fact, the rate coefficients
are of the same order of magnitude (10−10 cm3 s−1) as for
non-submerged-shell atoms. This implies the presence of
additional spin relaxation mechanisms.

Submerged-shell atoms, such as dysprosium Dy(6I8) and
erbium Er(3H6), focused on in this review, have not only a large
magnetic moment but also a large non-zero orbital angular
momentum L. The electronic structure of these non-S state
atoms leads to an additional source of anisotropy in their
interactions and it is, for example, of relevance to determine
its effect on Feshbach resonance tuning and control.

The importance of anisotropy in the interactions of cold
atoms with non-zero angular momenta was first theoretically
investigated by [26, 37, 63, 64]. They have shown strong
evidence of electronic interaction anisotropy as a leading spin
relaxation mechanism in collisions.

4.2. Universality in collisions of Dy atoms

A wealth of fascinating properties of interacting Dy atoms in
their ground state was revealed by the theoretical analyses of
[32]. Using experimental data on atomic transition frequencies
and oscillator strength the authors constructed 153 interaction
potentials that dissociate to two ground-state atoms. Splittings
between these potentials provide an estimate for the strength of
the anisotropic forces that play a crucial role in the alignment
of the open 4f-shell electrons and in sublevel- or m-changing
relaxation mechanisms. In addition, the authors used a
universal scattering model to study inelastic scattering and
estimate loss rates. This model, originally developed in
[65, 66], assumes scattering from a single potential −C6/R

6 +
h̄2�(� + 1)/(2µrR

2) for R > Rc and where C6 is equal to the
isotropic van der Waals coefficient. Atom pairs that reach
the critical interatomic separation Rc undergo m-changing
collisions with unit probability independent of scattering
energy and partial wave �. The model assumes that for R > Rc

coupling due to the anisotropic dispersion potential and the
dipole–dipole interaction can be neglected. Figure 10(a)
shows inelastic rate coefficients for a gas of Dy atoms with
equal populations in all m sublevels as a function of collisional
energy within this universal model.

Another important anisotropic interaction between Dy
atoms that can cause inelastic losses comes from the magnetic
dipole–dipole interactions. The rate of these losses was esti-
mated in [32] by using perturbative Born approximation and
shown as a function of collision energy in figure 10(b). These
rates were compared to the experimental loss rate measured at
a temperature of ≈500 µK confined in a quadrupole magnetic
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Figure 10. The inelastic loss rate coefficient for a
non-spin-polarized sample of ground state 164Dy atoms as a function
of collision energy based on a universal scattering model for losses
due to the anisotropy of the dispersion potential (a) and a Born
approximation for losses from the magnetic dipole–dipole
interaction (b). For the universal model rate coefficients for the
lowest four partial waves and the summed rate are shown. The
unitary limited rate coefficients for each of the four partial waves are
plotted as dashed lines. The loss rate coefficient for the magnetic
dipole–dipole interaction is given for a quadrupole as well as a
dipole trap with a constant magnetic field of B = 10 G. Reproduced
from [32] by permission of the PCCP Owner Societies.

trap (a trap with zero magnetic field in the center) in [31]. Both
experiment and theory show rates of the order of 10−10 cm3 s−1

as predicted for other submerged-shell atoms in [28].

4.3. Quantum degenerate gas of Dy atoms

A direct and efficient transfer of atoms into an optical dipole
trap allowed researchers from the University of Illinois and
Stanford University to form a Bose condensate of the bosonic
164Dy atoms at temperatures below 30 nK [2]. They also cooled
fermionic 161Dy in the presence of bosonic isotopes to form
a Fermi sea of atoms thus realizing a novel, nearly quantum
degenerate dipolar Bose–Fermi mixture [3].

Recent theoretical work [36] performed a fully quantum-
mechanical scattering calculation of the scattering length and
elastic rates between two ultracold dysprosium atoms in the
lowest Zeeman sublevels mj = −8 and under experimental
conditions of [3]. This investigation predicted for the first
time the existence of strong and broad Feshbach resonances in
interaction between bosonic 160Dy, 162Dy, and 164Dy atoms,
which have zero nuclear spin, for a magnetic field range
from zero to 200 G. These resonances are solely induced
by the anisotropy in the long-range interaction potentials.
Without the magnetic dipole–dipole and anisotropic dispersion
potentials in the Hamiltonian resonances do not occur. Both
anisotropies contribute to the appearance of a resonance
structure. Figure 11 provides evidence of the direct effect of
both anisotropies on the magnetic-field location of Feshbach
resonances. Switching on and off different parts of the
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Hamiltonian, the researchers observed a significant change in
the resonance distribution.

Despite the fact that the broadest resonances in figure 10
were identified as ‘d’- and ‘g’-wave resonance channels
with � up 10 needed to be included to converge the close-
coupling calculation. The long-range potential energy curves
of interacting 164Dy atoms for a magnetic field B = 50 G are
shown as a function of interatomic separation in figure 12.
For R > 200a0 the Zeeman forces dominate the collision
dynamics, whereas for R < 200a0 the potential curves

Figure 13. Experimental observation of Feshbach resonances in
collisions of mJ = −8 164Dy atoms of [67]. The top panel shows a
spectrum obtained at a temperature of ≈420 nK. The lower panel
displays a spectrum at a higher temperatures of ≈800 nK. The
arrows indicate the positions of the resonances.

of higher partial waves overlap indicating the possibility of
coupling between potentials.

4.4. First observation of low-magnetic field Feshbach
resonances in Dy collisions

Reference [67] has recently reported the observation of col-
lisional resonances in trap loss of spin-polarized Dy atoms
in their energetically lowest Zeeman sublevel. The measure-
ments were performed for three bosonic isotopes, 160Dy, 162Dy,
and 164Dy, and a single fermionic isotope of 161Dy. The
bosonic atoms were transferred into the mJ = −8 magnetic
sublevel , while the fermionic atoms were placed into the low-
est hyperfine sublevel F = 21/2, mF = −21/2, where �F
is the sum of the total electronic angular momentum and the
nuclear spin. Observation of Feshbach resonances as shown
in figure 13 was recorded in the magnetic field range from 0
to 6 G, where the resonant density exceeded 3 resonances for
Gauss for bosonic 164Dy at a temperature of 420 nK and about 5
resonances per Gauss for a higher temperature of 800 nK. This
observation of these resonances was predicted by the simula-
tions of [36], which showed that strong anisotropic interactions
between Dy atoms will lead to the appearance of strong reso-
nances. The theoretical calculations of the Dy Feshbach spec-
trum, however, were performed at a much lower collisional
energy of E/kB = 30 nK and exhibited a lower resonance
density. In order to give quantitative insight into collisional dy-
namics of magnetic dysprosium the theory must optimize the
model parameters and conduct calculations at the experimental
conditions of [67]. It seems likely that Dy is more anisotropic
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Figure 14. Experimental observation of Feshbach resonances in
collisions of mJ = −6 168Er atoms. The measured temperature (a)
and atom number (b) are plotted as a function of magnetic field.
Reproduced with permission from [5]. © 2012 American Physical
Society.

than previously thought [36]. In addition, at higher tempera-
tures around 400–800 nK non-zero partial wave collisions may
become important and increase the resonance density.

4.5. Study of Er atom collisions in a magneto-optical trap and
an optical trap

Exploration of collisional dynamics between the ultracold
erbium atoms began in 2006 with Dr McClelland’s group at
NIST [68]. They demonstrated the operation of a magneto-
optical trap (MOT) and laser cooling of Er to millikelvin
temperatures. Later the group of Professor Ferlaino at the
University of Innsbruck adapted the cooling techniques of [68]
and applied a narrow-line MOT allowing them to further cool
Er atoms. They reached temperatures of 15 µK [4]. After
directly loading atoms into an optical dipole trap and using
evaporative cooling they created a pure 168Er BEC [5]. At
magnetic fields below 3 G they immediately observed six
Feshbach resonances as shown in figure 14. The presence of
low-field resonances in the Er interactions opens extraordinary
possibilities to study dipolar properties for atoms with a strong
coupling between various partial waves and Zeeman sublevels.

4.6. Evidence for a strong collisional anisotropy in Er
interactions

A further study by this group using high-resolution trap-
loss spectroscopy [38] revealed a dense forest of Feshbach
resonances for magnetic fields from 0 to 70 G. In fact, they
observed for two bosonic isotopes, 168Er and 166Er, both in
their lowest Zeeman sublevel mj = −6 this unprecedented
large number of resonant features with a mean density ρ̄ of 3
resonances per Gauss. An even more dense spectrum of 26
resonances per Gauss was obtained for an optically trapped
sample of fermionic 167Er atoms in their lowest Zeeman
sublevel, mF = −19/2.

Figure 15. The normalized distribution P(s) of nearest-neighbor
spacings (NNS) of 168Er Feshbach resonances as a function of
dimensionless s = �Bρ̄, where the �B are NNS and ρ̄ is the mean
resonance density per unit field strength. The experimental data is
shown as a bar graph and filled red circles with error bars. The
dashed gray, dashed–dotted gray, and solid red curves are Poisson,
Wigner–Dyson and Brody distributions fit to the experimental data,
respectively. The dotted blue line is a Brody distribution fit to the
distribution of NNS of a close-coupling calculation where partial
waves up to Lmax = 20 have been included. Reproduced with
permission from [38]. © 2014 Nature Publishing Group.

Based on the enormous number of resonances the
experimentalists with support of the theorists set up to
investigate the statistical properties of the observed spectra
for the bosonic atoms. First, the authors of [38] performed
an analysis of the nearest-neighbor spacings (NNS) and
interpreted their results using distributions derived in random
matrix theory (RMT), originally introduced by [33, 34].
RMT attempts to characterize the presence or absence of
correlations between levels or in this case Feshbach resonance
positions. In parallel, several first-principle coupled-channel
(cc) calculations of Er Feshbach spectra were performed. A
resonance spectrum of the scattering length was obtained by
only including channels with even partial waves � from 0 up
to Lmax. Calculations were performed up to Lmax = 20. The
theoretical simulations also found a large number of resonances
between B = 0 and 70 G, which could also by analyzed
in terms of resonance distributions compared to predictions
of RMT.

4.7. Statistical description of a Feshbach spectrum

Figure 15 shows the distribution of the NNS between
Feshbach resonances for the 168Er isotope for fields between
B = 30 to 70 G and grouping resonance spacings �B in
bins with a width of 160 mG. These spacings scaled to the
mean spacing, s, were then fit to a Poisson distribution
P(s) = exp(−s) for non-interaction levels, the Wigner–Dyson
distribution P(s) = (π/2)s exp(−πs2/4) characterizing
strongly interacting levels, and the Brody distribution, which is
a one-parameter function that smoothly connects between the
Poisson and Wigner–Dyson distribution. The authors of [38]
concluded that the NNS of erbium closely resembled a Wigner–
Dyson distribution.

In addition, figure 15 shows the Brody distribution fit to
the NNS of the theoretical cc spectrum with Lmax = 20 and
using a collision energy of E/kB = 360 nK. The agreement
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Figure 16. Mean resonance density ρ̄ for bosonic Er as a function of
the largest included partial wave Lmax of theoretical close-coupling
calculations. The cc-calculated densities are shown by green circles
up to Lmax = 20. The solid black line shows an analytical estimate
of mean density for Lmax up to 70. The experimentally measured
mean resonance densities are presented for 168Er (dashed line) and
for 166Er (dashed–dotted line) with one sigma confidence bands
(shaded areas). Reproduced with permission from [38]. © 2014
Nature Publishing Group.

between the experimental and theoretical Brody distributions
is impressive. This is the more surprising as it should be noted
that for Lmax = 20 the ccs calculation did not yet converge.
For example the resonance density was still increasing with
increasing Lmax and for Lmax = 20 the mean density was only
ρ̄ = 1.5 per Gauss.

The behavior of the mean resonance density of Feshbach
resonances obtained from cc calculations was further studied
by systematically increasing the largest included partial wave
Lmax and are shown in figure 16. The figure also shows
an estimate of ρ̄ for larger Lmax by essentially counting the
number of weakly bound rovibrational states of the closed
channels. This simple approach relied on a separation of
energy scales: for small/large interatomic separations the
anisotropic couplings are large/small compared to the Zeeman
interaction and rotational or coriolis forces, respectively, and
that, crucially, in the radial cross-over region the isotropic part
of the potentials is much deeper than the Zeeman and rotational
splittings. Reference [38] then concluded that at least 40 partial
waves will be needed to explain the experimental resonance
density.

4.8. Dipolar effects on fermionic atom cooling

We finish this section by noting that erbium has one
stable fermionic isotope, 167Er, with non-zero nuclear spin.
First experiments for this isotope have only recently been
performed. Not surprisingly the magnetic dipole–dipole
interaction between these Er atoms plays a prominent role in
their cooling. Reference [69] showed that fermionic atoms,
all in the same magnetic sublevel, can still be thermalized even
though such atoms cannot collide by even partial waves (and in
particular the s-wave) as Fermi statistics forbids such channels.
They must thermalize by p-wave collisions instead. This
thermalization occurred with cross-sections that are consistent
with perturbative predictions from universal dipole scattering
theory [70, 71].

5. Magnetic control of mixed gases of ground and
meta-stable rare-earth atoms

The collisional characteristics of the meta-stable Yb∗(3P2)
atoms were recently explored by Professor Takahashi’s group
at Kyoto University, Japan, and Professor Gupta’s group at
the University of Washington [6, 7]. Again in contrast to the
well studied alkali-metal atom collisions, ultracold collisions
between meta-stable rare-earth atoms are highly anisotropic
due to the interplay between interaction anisotropies and spin–
orbit coupling. The first experimental realization of optical
trapping of ultracold 174Yb∗(3P2) atoms and measurement of its
inelastic collisional rate was performed by [72]. Fine-structure
changing collisions were suggested to be the main source of
these losses. Later, the same group measured the dynamic
polarizability of 3P2 magnetic sublevels at laser wavelengths of
532 nm [73] and 1070 nm [74] by performing a high-resolution
spectroscopy in a Yb Bose condensate.

Historically, considerable attention has been given to
the theory of fine-structure changing collisions of atoms
in P electronic states with structureless atoms. Spin–
orbit relaxation in such systems was found to be very
efficient due to the interplay with interaction anisotropies.
The orientation-dependent cross-section for fine-structure
transitions in collisions between ground state He and 2P Na
atoms near room-temperatures was first analyzed in [75]. The
oscillatory behavior of the cross-section with collision energy
was shown to be related to shape resonances in the elastic
scattering channels. The theory of fine-structure transitions in
collisions between a proton and a fluorine atom in its ground 2P
state was formulated in terms of molecular states and treated
by the quantum close-coupling method in [76].

Fine-structure changing collisions of alkaline-metal atoms
in a 3P state with He atoms were studied in [77]. They reported
a significant increase in the cross-section due to orientational
anisotropies leading to coriolis coupling between the orbital
and electronic angular momenta. In [78] the interaction of
oxygen 3P-state atoms with the rare gases was studied. The
authors found that the interaction anisotropy increases from He
to Xe due to an increasing contribution from the excited ionic
states. This investigation emphasized the effect of anisotropy
in the van der Waals interaction on collisional dynamics of
the open shell atoms. Collisions between two 3P oxygen
atoms were studied in [79]. As in previous calculations the
authors estimate the cross-section of a fine-structure transition
using a full quantum close-coupling theory. They found that
inclusion of the fine-structure splitting in the model has a
dramatic effect on the transition cross-section. In 2008 a
combined experimental and theoretical study [80] of cold 1 K
collisions between open P-shell bismuth and helium atoms in
the presence of a magnetic field demonstrated strong Zeeman
relaxation attributed to the combined effect of interaction
anisotropy and spin–orbit coupling.

Finally, we note that anisotropies in atom–molecule
van der Waals complexes containing P-state systems were
studied in [81, 82]. It was emphasized that the long-range
intermolecular forces have a significant influence on the
collisional dynamics by orienting the reactants during the
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Figure 17. Excitation spectra near the 3P2 (mJ = +2) state of 174Yb
in an optical lattice at various magnetic fields below 1 G. Lattice
sites contain either one or two atoms. Peaks due to doubly occupied
sites are indicated by arrows and change their location as a function
of magnetic field. Reproduced with permission from [6]. © 2013
American Physical Society.

collision. In addition, spin–orbit couplings have a strong effect
on the long-range forces.

5.1. Homonuclear ground and meta-stable state collisions

Feshbach resonances in ultracold meta-stable atom collisions
are a result of strong interaction anisotropies that depend on
the orientation of the interatomic axis relative to an external
magnetic field. Resonances of this nature were recently
observed by [6] for homonuclear collisions between a ground
and a meta-stable 3P2

174Yb atom held in doubly occupied
sites of an optical lattice as shown in figure 17 for magnetic
fields below 1 G. The spectra in figure 17 were obtained by
photoassociative spectroscopy near the atomic 1S0-3P2(mJ =
+2) transition. The authors infer that a resonance occurs at
Bres = 360 ± 10 mG. Reference [6] also observed a Feshbach
resonance in the 1S0+3P2(mJ = −2) collision of the 170Yb
isotope. Its location is Bres = 1.12 ± 0.01 G.
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3, and

the isotropic and anisotropic dispersion interaction is C6/R
6 and
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6, respectively. Here gLi = 2 and gYb∗ = 1.5 are g-factors of

Li and Yb∗(3P2), respectively. We assumed C6 = 2987.5 a.u. and
�C6 = 585 a.u. [7].

5.2. Heteronuclear alkali-metal and meta-stable rare-earth
collisions

In 2011 a quantum-degenerate mixture of fermionic alkali-
metal 6Li and bosonic 174Yb atoms was obtained by Dr Gupta’s
group [83] with the goal to use photoassociation to create
paramagnetic polar LiYb molecules. Now this group has
reported on the realization of an ultracold mixture of 6Li and
meta-stable 174Yb∗(3P2) [7]. Measurements of the two-body
inelastic decay coefficients for collisions of the 3P2 mJ = −1
Zeeman sublevel and a ground state Li atom indicate a low rate
coefficient of the order of 10−12 cm3 s−1. As an important aside
the authors of [7] also calculated the dynamic polarizability of
the ground and meta-stable Yb∗ state over a wide range of
laser frequencies allowing the future identification of magic
frequencies where both states are identically trapped. The
long-range dispersion coefficients were also evaluated. Based
on these analyses figure 18 shows the strength of the two major
anisotropic long-range interatomic interactions and compares
them to Zeeman energies and the hyperfine splitting of the
Li ground state. When the curves for the magnetic dipole or
anisotropic dispersion interaction cross the Zeeman, hyperfine,
and/or rotational energies spin flips can occur. The magnetic
dipole–dipole potential crosses the Zeeman curves for B = 10
and 100 G at R < 50a0, where chemical bonding should play
an important role as well.

5.3. Prediction of anisotropy-induced resonances in mixed
species collisions

An important step in the conversion of a weakly interacting gas
of 6Li and 174Yb atoms into a strongly interacting one, or even
to a gas of weakly bound molecules, is magnetic Feshbach
tuning. Theoretical work of [84] on ground-state collisions
of 6Li and 174Yb recently predicted that magnetically tunable
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Feshbach resonances can exist due to a modification of the Li
hyperfine coupling in the presence of the Yb atom. However,
these resonances are expected to be extremely narrow, on the
order of mG, and difficult to observe. A promising alternative
way to observe broader and stronger magnetic Feshbach
resonances is to consider interactions between a ground-state
Li atom and a long-lived meta-stable Yb atom. These meta-
stable Feshbach resonances and their associated weakly bound
meta-stable molecules might be used to efficiently transfer
colliding atoms to a vibrational level of the absolute molecular
ground state.

Reference [85] performed cc calculations for 6Li+
174Yb∗(3P2) meta-stable collisions as a function of magnetic
field and showed that broad and strong magnetic Feshbach
resonances can be formed as the meta-stable Yb∗(3P2) atom has
non-zero electron orbital angular momentum �L and, thus, their
interactions are highly anisotropic. The predicted meta-stable
magnetic Feshbach resonances [85] may become vulnerable to
decay processes or broadening mechanisms that render them
unobservable, such as the spin–orbit interaction of the meta-
stable Yb∗ atom. Collisional resonances of the LiYb∗ system
could also be broadend by R-dependent spontaneous emission
of the interacting atoms. This process occurs as excited short-
lived lithium states contribute to the formation of the molecular
bond. For the future it would be beneficial to determine
resonance broadening due to this effect.

6. Conclusion

This paper has discussed recent advances in our understanding
of scattering properties of high-spin open-shell atomic
systems. In particular, our attention was directed toward
magnetic atoms with submerged inner shells, such as
chromium, dysprosium and erbium, in their ground state as
well as ytterbium in its meta-stable state. These atoms, both
bosons and fermions, were successfully cooled to quantum
degeneracy and confined in optical dipole traps or optical
lattices, allowing the study of their collisions at the quantum
level.

Similar to alkali-metal atom collisions, magnetic
Feshbach resonances represent a powerful tool to control the
interactions between these exotic magnetic atoms. However,
the nature and distribution of resonances for these two systems
are completely different. Feshbach resonances in s-wave
collisions of magnetic atoms are anisotropy-induced due to a
coupling to rotating molecular states containing energetically
higher Zeeman sublevels. The long-range magnetic dipole–
dipole and electrostatic interactions are the main source of this
anisotropy. This is in stark contrast to the alkali-metals, where
the strongest resonances are hyperfine-induced at short range
and due to resonant bound states that do not rotate.

In this review we also emphasized a new way of looking
at and describing interactions between atoms and molecules
with a multiplicity of internal states. This approach involved
the statistical analyses of Feshbach resonance distribution
using random matrix theory. The analysis of the resonance
distribution of experimentally observed Feshbach spectra
as well as theoretical spectra from quantum-mechanical

scattering calculations in erbium could be satisfactorily
classified in terms of random matrix theory.

Finally, we speculate that there is a growing interest
in the creation of samples of trapped ultracold mixtures of
highly magnetic lanthanide and alkali-metal atoms. These
mixtures may have lower collisional anisotropy and produce
less complex resonance spectra, possibly leading to a more
easily controllable system.
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